

Perspecta Labs SecurelO v2.0.4 Security Target

Acumen Security, LLC.

Document Version: 0.8

Table Of Contents

1	Sec	curity T	arget Introduction	5
	1.1	Secu	rity Target and TOE Reference	5
	1.2	TOE	Overview	5
	1.3	TOE	Architecture	5
	1.3	8.1	Physical Boundaries	5
		1.3.1.1	Software Requirements	6
	1.3	3.2	Security Functions provided by the TOE	6
		1.3.2.1	Cryptographic Support	6
		1.3.2.2	User Data Protection	6
		1.3.2.3	Security Management	6
		1.3.2.4	Privacy	6
		1.3.2.5	Protection of the TSF	
		1.3.2.6	Trusted Path/Channels	6
		1.3.2.7	Identification and Authentication	6
	1.3	8.3	TOE Documentation	6
	1.3	8.4	Other References	6
2	Со	nforma	ince Claims	7
	2.1	CC C	onformance	7
	2.2	Prot	ection Profile Conformance	7
	2.3		ormance Rationale	
	2.3	8.1	Technical Decisions	7
3	Sec	curity F	roblem Definition	8
	3.1	Thre	ats	8
	3.2	Assu	mptions	8
	3.3	Orga	nizational Security Policies	9
4	Sec	•	Dbjectives1	
	4.1		rity Objectives for the TOE1	
	4.2		rity Objectives for the Operational Environment1	
5	Sec	curity F	equirements1	.2
	5.1		rentions1	
	5.2		rity Functional requirements1	
	5.2	2.1	Cryptographic Support (FCS)1	
	5.2	2.2	User Data Protection (FDP)1	3

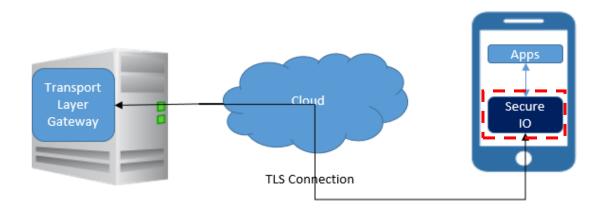
5.2.3 Security Management (FMT)		Security Management (FMT)	14	
	5.2.	4	Privacy (FPR)	14
	5.2.	5	Protection of TSF (FPT)	14
	5.2.	6	Trusted Path/Channel (FTP)	16
	5.2.	7	Identification and Authentication (FIA)	16
	5.3	TOE	SFR Dependencies Rationale for SFRs	17
	5.4 Security Assurance Requirements			17
	5.5 Rationale for Security Assurance Requirements18			18
	5.6 Assurance Measures			
6	TOE Summary Specification			20
7	Acronym Table23			

Revision History

Version	Date	Description	
0.1	04/06/20	Initial Draft	
0.2	09/04/20	Addressed Comments	
0.3	09/09/20	Addressed QA Team Comments	
0.4	09/15/20	Addressed TL comments	
0.5	09/22/20	Addressed Vendor's comments	
0.6 01/15/2021 Addressed ECR check-in comments		Addressed ECR check-in comments	
0.7 06/07/2021 Addressed latest TDs and added X.509 claims		Addressed latest TDs and added X.509 claims	
0.8	0.8 06/30/2021 Addressed ECR comments		

1 Security Target Introduction

1.1 Security Target and TOE Reference


Category	Identifier	
ST Title	Perspecta Labs SecureIO v2.0.4 Security Target	
ST Version	0.8	
ST Date	June 30, 2021	
ST Author	Acumen Security, LLC.	
TOE Identifier	Perspecta Labs SecureIO v2.0.4	
TOE Software Version	2.0.4	
TOE Developer	Perspecta Labs	
Key Words	TLS Proxy	

This section provides information needed to identify and control this ST and its TOE.

Table 1 TOE/ST Identification

1.2 TOE Overview

The SecureIO application provides a secure communication channel for Android applications by transmitting and receiving network traffic over a secure TLS channel. The traffic will be protected in transit using TLS between the Android device and a TLS server. Figure 1 below provides an overview and indicates the TOE boundary with a red-dotted line.

Figure 1 SecureIO Overview

The functionality of the SecureIO service is limited to (i) establishing and shutting down a TLS connection to the Transport Layer Gateway (TLG); (ii) sending and receiving messages to and from the TLG on behalf of Android apps via the TLS connection.

1.3 TOE Architecture

1.3.1 Physical Boundaries

The TOE is a software application that resides entirely on its Android-based mobile platform.

1.3.1.1 Software Requirements

The TOE runs on Android versions 8.0, 9.0, and 10.0. All sub-versions of 8.0 (e.g. 8.1.0), 9.0 and 10.0 are supported.

1.3.2 Security Functions provided by the TOE

The TOE provides the security functionality required by Protection Profile for Application Software Version 1.3 [SWAPP].

1.3.2.1 Cryptographic Support

The TOE relies on underlying cryptographic functionality provided by the platform for all of its cryptographic operations.

1.3.2.2 User Data Protection

The TOE is a TLS proxy that encrypts data sent by other applications on its host platform.

1.3.2.3 Security Management

The TOE does not come with any default credentials. It identifies itself to the TLS gateway that it connects to using a certificate and private key. These are provisioned onto the TOE by an administrator or end user.

1.3.2.4 Privacy

The TOE itself does not contain or transmit any PII. It functions as a TLS proxy over which other applications on the platform may transmit whatever data they wish.

1.3.2.5 Protection of the TSF

The TOE employs several mechanisms to ensure that it is secure on the host platform. Only documented platform APIs are used by the TOE. The TOE never allocates memory with both write and execute permission. Evaluated platform functionality is used to verify the TOE version and perform updates, and no third-party libraries are used.

1.3.2.6 Trusted Path/Channels

TLS is used to protect all data transmitted to and from the TOE.

1.3.2.7 Identification and Authentication

Certificate validation and certificate authentication performed by the TOE as part of TLS, in accordance with RFC 5280.

1.3.3 TOE Documentation

- [ST] Perspecta Labs SecureIO v2.0.4 Security Target, Version 0.7
- [AGD] Perspecta Labs SecureIO User Manual, Version 2.0.4

1.3.4 Other References

Protection Profile for Application Software, version 1.3, dated, 01 March 2019 [SWAPP].

2 Conformance Claims

2.1 CC Conformance

This TOE is conformant to:

- Common Criteria for Information Technology Security Evaluations Part 1, Version 3.1, Revision 5, April 2017
- Common Criteria for Information Technology Security Evaluations Part 2, Version 3.1, Revision 5, April 2017: Part 2 extended
- Common Criteria for Information Technology Security Evaluations Part 2, Version 3.1, Revision 5, April 2017: Part 3 extended

2.2 Protection Profile Conformance

This TOE is conformant to:

• Protection Profile for Application Software, Version 1.3, dated 01 March 2019 [SWAPP]

2.3 Conformance Rationale

This Security Target provides exact conformance to Version 1.3 of the Protection Profile for Application Software. The security problem definition, security objectives, and security requirements in this Security Target are all taken from the Protection Profile performing only operations defined there.

2.3.1 Technical Decisions

All NIAP Technical Decisions (TDs) issued to date that are applicable to [SWAPP] have been addressed. The following table identifies all applicable TDs:

Identifier	Applicable	Exclusion Rationale (if applicable)
TD0587 – X.509 SFR Applicability in App PP	Yes	
TD0582 – PP-Configuration for Application	Yes	
Software and Virtual Private Network (VPN)		
Clients now allowed		
TD0561 – Signature verification update	Yes	
TD0554 – iOS/iPadOS/Android AppSW Virus	Yes	
Scan		
TD0548 – Integrity for installation tests in	Yes	
AppSW PP 1.3		
TD0544 – Alternative testing methods for	Yes	
FPT_AEX_EXT.1.1		
TD0543 – FMT_MEC_EXT.1 evaluation activity	No	This TD only applies to Windows platforms. The
update		TOE runs on Android.
TD0540 – Expanded AES Modes in FCS_COP	No	FCS_COP SFRs are not claimed by the TOE.
TD0519 – Linux symbolic links and	No	This TD only applies to Linux platform. The TOE
FMT_CFG_EXT.1		runs on Android.
TD0515 – Use Android APK manifest in test	Yes	
TD0510 – Obtaining random bytes for	No	This TD only applies to iOS platforms. The TOE
iOS/macOS		runs on Android.
TD0498 – Application Software PP Security	Yes	
Objectives and Requirements Rationale		
TD0495 – FIA_X509_EXT.1.2 Test Clarification	Yes	
TD0473 – Support for Client or Server TOEs in	No	HTTPS protocol is not implemented by the TOE.
FCS_HTTPS_EXT		

TD0465 – Configuration Storage for .NET	No	This TD only applies to Windows platforms. The
Apps		TOE runs on Android.
TD0445 – User Modifiable File Definition	Yes	
TD0437 – Supported Configuration	Yes	
Mechanism		
TD0435 – Alternative to SELinux for	No	This TD only applies to Linux platforms. The TOE
FPT_AEX_EXT.1.3		runs on Android.
TD0434 – Windows Desktop Applications Test	No	This TD only applies to Windows platforms. The
		TOE runs on Android.
TD0427 – Reliable Time Source	Yes	
TD0416 – Correction to FCS_RBG_EXT.1 Test	Yes	
Activity		

Table 2 SWAPP Technical Decisions

3 Security Problem Definition

The security problem definition has been taken from [SWAPP] and is reproduced here for the convenience of the reader. The security problem is described in terms of the threats that the TOE is expected to address, assumptions about the operational environment, and any organizational security policies that the TOE is expected to enforce.

3.1 Threats

The following threats are drawn directly from the [SWAPP].

ID	Threat
T.NETWORK_ATTACK	An attacker is positioned on a communications channel or elsewhere on the
	network infrastructure. Attackers may engage in communications with the
	application software or alter communications between the application software
	and other endpoints in order to compromise it.
T.NETWORK_EAVESDROP	An attacker is positioned on a communications channel or elsewhere on the
	network infrastructure. Attackers may monitor and gain access to data exchanged
	between the application and other endpoints.
T.LOCAL_ATTACK	An attacker can act through unprivileged software on the same computing
	platform on which the application executes. Attackers may provide maliciously
	formatted input to the application in the form of files or other local
	communications.
T.PHYSICAL_ACCESS	An attacker may try to access sensitive data at rest.

Table 3 Threats

3.2 Assumptions

The following assumptions are drawn directly from the SWAPP.

ID	Assumption
A.PLATFORM	The TOE relies upon a trustworthy computing platform with a reliable time clock
	for its execution. This includes the underlying platform and whatever runtime
	environment it provides to the TOE.
A.PROPER_USER	The user of the application software is not willfully negligent or hostile, and uses
	the software in compliance with the applied enterprise security policy.
A.PROPER_ADMIN	The administrator of the application software is not careless, willfully negligent or
	hostile, and administers the software within compliance of the applied enterprise
	security policy.

Table 4 Assumptions

3.3 Organizational Security Policies

There are no OSPs for the application.

4 Security Objectives

The security objectives have been taken from [SWAPP] and are reproduced here for the convenience of the reader.

4.1 Security Objectives for the TOE

The following security objectives for the TOE were drawn directly from the SWAPP.

ID	TOE Objective
O.INTEGRITY	Conformant TOEs ensure the integrity of their installation and update packages,
	and also leverage execution environment-based mitigations. Software is seldom if
	ever shipped without errors, and the ability to deploy patches and updates to
	fielded software with integrity is critical to enterprise network security. Processor
	manufacturers, compiler developers, execution environment vendors, and
	operating system vendors have developed execution environment-based
	mitigations that increase the cost to attackers by adding complexity to the task of
	compromising systems. Application software can often take advantage of these
	mechanisms by using APIs provided by the runtime environment or by enabling the
	mechanism through compiler or linker options.
	Addressed by: FDP_DEC_EXT.1, FMT_CFG_EXT.1, FPT_AEX_EXT.1, FPT_TUD_EXT.1
O.QUALITY	To ensure quality of implementation, conformant TOEs leverage services and APIs
	provided by the runtime environment rather than implementing their own versions
	of these services and APIs. This is especially important for cryptographic services
	and other complex operations such as file and media parsing. Leveraging this
	platform behavior relies upon using only documented and supported APIs.
	Addressed by: FMT_MEC_EXT.1, FPT_API_EXT.1, FPT_LIB_EXT.1, FPT_TUD_EXT.2
O.MANAGEMENT	To facilitate management by users and the enterprise, conformant TOEs provide
	consistent and supported interfaces for their security-relevant configuration and
	maintenance. This includes the deployment of applications and application updates
	through the use of platform-supported deployment mechanisms and formats, as
	well as providing mechanisms for configuration. This also includes providing control
	to the user regarding disclosure of any PII.
	Addressed by: FMT_SMF.1, FPT_IDV_EXT.1, FPT_TUD_EXT.1, FPR_ANO_EXT.1
O.PROTECTED_STORAGE	To address the issue of loss of confidentiality of user data in the event of loss of
	physical control of the storage medium, conformant TOEs will use data-at-rest
	protection. This involves encrypting data and keys stored by the TOE in order to
	prevent unauthorized access to this data. This also includes unnecessary network
	communications whose consequence may be the loss of data.
	Addressed by: FDP_DAR_EXT.1, FCS_STO_EXT.1, FCS_RBG_EXT.1
O.PROTECTED_COMMS	To address both passive (eavesdropping) and active (packet modification) network
	attack threats, conformant TOEs will use a trusted channel for sensitive data.
	Sensitive data includes cryptographic keys, passwords, and any other data specific
	to the application that should not be exposed outside of the application.
	Addressed by: FTP_DIT_EXT.1, FCS_RBG_EXT.1, FCS_CKM_EXT.1, FDP_NET_EXT.1

Table 5 Objectives for the TOE

4.2 Security Objectives for the Operational Environment

The following security objectives for the operational environment assist the TOE in correctly providing its security functionality. These track with the assumptions about the environment.

ID	Objective for the Operation Environment	
OE.PLATFORM	The TOE relies upon a trustworthy computing platform for its execution. This	
	includes the underlying operating system and any discrete execution environment	
	provided to the TOE.	
OE.PROPER_USER	The user of the application software is not willfully negligent or hostile, and uses	
	the software within compliance of the applied enterprise security policy.	
OE.PROPER_ADMIN	The administrator of the application software is not careless, willfully negligent or	
	hostile, and administers the software within compliance of the applied enterprise	
	security policy.	

Table 6 Objectives for the environment

5 Security Requirements

This section identifies the Security Functional Requirements for the TOE and/or Platform. The Security Functional Requirements included in this section are derived from Part 2 of the Common Criteria for Information Technology Security Evaluation, Version 3.1, Revision 5 and all international interpretations.

Requirement	Requirement Description		
Mandatory SFRs			
FCS_RBG_EXT.1	Random Bit Generation Services		
FCS_CKM_EXT.1	Cryptographic Key Generation Services		
FCS_STO_EXT.1	Storage of Credentials		
FDP_DEC_EXT.1	Access to Platform Resources		
FDP_NET_EXT.1	Network Communications		
FDP_DAR_EXT.1	Encryption Of Sensitive Application Data		
FMT_MEC_EXT.1	Supported Configuration Mechanism		
FMT_CFG_EXT.1	Secure by Default Configuration		
FMT_SMF.1	Specification of Management Functions		
FPR_ANO_EXT.1	User Consent for Transmission of Personally Identifiable		
	Information		
FPT_API_EXT.1	Use of Supported Services and APIs		
FPT_AEX_EXT.1	Anti-Exploitation Capabilities		
FPT_TUD_EXT.1	Integrity for Installation and Update		
FPT_LIB_EXT.1	Use of Third Party Libraries		
FPT_IDV_EXT.1	Software Identification and Versions		
FTP_DIT_EXT.1	Protection of Data in Transit		
Optional, Selection-Based and Ob	ojective SFRs		
FPT_TUD_EXT.2	Integrity for Installation and Update		
FIA_X509_EXT.1	X.509 Certificate Validation		
FIA_X509_EXT.2	X.509 Certificate Authentication		

Table 7 SFRs

5.1 Conventions

The CC defines operations on Security Functional Requirements: assignments, selections, assignments within selections and refinements. This document uses the following font conventions to identify the operations defined by the CC:

- Assignment: Indicated with *italicized* text;
- Refinement: Indicated with **bold** text;
- Selection: Indicated with <u>underlined</u> text;
- Iteration: Indicated by appending the iteration number in parenthesis, e.g., (1), (2), (3).
- Where operations were completed in the PP itself, the formatting used in the PP has been retained.

Explicitly stated SFRs are identified by having a label 'EXT' after the requirement name for TOE SFRs. Formatting conventions outside of operations matches the formatting specified within the PP.

5.2 Security Functional requirements

5.2.1 Cryptographic Support (FCS)

FCS_RBG_EXT.1 Random Bit Generation Services

FCS_RBG_EXT.1.1

The application shall [

use no DRBG functionality

] for its cryptographic operations.

FCS_CKM_EXT.1 Cryptographic Key Generation Services

FCS_CKM_EXT.1.1

The application shall [

generate no asymmetric cryptographic keys

ŀ

FCS_STO_EXT.1 Storage of Credentials

FCS_STO_EXT.1.1

The application shall [

• invoke the functionality provided by the platform to securely store X.509 certificates

] to non-volatile memory.

5.2.2 User Data Protection (FDP)

FDP_DEC_EXT.1 Access to Platform Resources

FDP_DEC_EXT.1.1

The application shall restrict its access to [

• <u>network connectivity</u>.

].

FDP_DEC_EXT.1.2

The application shall restrict its access to [

• <u>no sensitive information repositories</u>.

].

FDP_NET_EXT.1 Network Communications

FDP_NET_EXT.1.1

The application shall restrict network communication to [

• <u>user-initiated communication for secure tunnel establishment.</u>

].

FDP_DAR_EXT.1 Encryption Of Sensitive Application Data

FDP_DAR_EXT.1.1

The application shall [

• not store any sensitive data

] in non-volatile memory.

5.2.3 Security Management (FMT)

FMT_MEC_EXT.1 Supported Configuration Mechanism

FMT_MEC_EXT.1.1¹

The application shall [

• invoke the mechanisms recommended by the platform vendor for storing and setting configuration options.]

FMT_CFG_EXT.1 Secure by Default Configuration

FMT_CFG_EXT.1.1

The application shall provide only enough functionality to set new credentials when configured with default credentials or no credentials.

FMT_CFG_EXT.1.2

The application shall be configured by default with file permissions which protect the application binaries and data files from modification by normal unprivileged users.

FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1

The TSF shall be capable of performing the following management functions [

• <u>no management functions.</u>

].

5.2.4 Privacy (FPR)

FPR_ANO_EXT.1 User Consent for Transmission of Personally Identifiable Information

FPR_ANO_EXT.1.1

The application shall [

• not transmit PII over a network.

].

5.2.5 Protection of TSF (FPT)

FPT_API_EXT.1 Use of Supported Services and APIs

FPT_API_EXT.1.1

The application shall only use documented platform APIs.

FPT_AEX_EXT.1 Anti-Exploitation Capabilities

FPT_AEX_EXT.1.1

¹ TD0437 applied.

The application shall not request to map memory at an explicit address except for [no exceptions].

FPT_AEX_EXT.1.2

The application shall [

• not allocate any memory region with both write and execute permissions.

].

FPT_AEX_EXT.1.3

The application shall be compatible with security features provided by the platform vendor.

FPT_AEX_EXT.1.4

The application shall not write user-modifiable files to directories that contain executable files unless explicitly directed by the user to do so.

FPT_AEX_EXT.1.5

The application shall be built with stack-based buffer overflow protection enabled.

FPT_TUD_EXT.1 Integrity for Installation and Update

FPT_TUD_EXT.1.1

The application shall [

• <u>leverage the platform</u>

] to check for updates and patches to the application software.

FPT_TUD_EXT.1.2

The application shall [

• provide the ability

] to query the current version of the application software.

FPT_TUD_EXT.1.3

The application shall not download, modify, replace or update its own binary code.

FPT_TUD_EXT.1.4²

Application updates shall be digitally signed such that the application platform can cryptographically verify them prior to installation.

FPT_TUD_EXT.1.5

The application is distributed [

• <u>as an additional software package to the platform OS</u>

].

² TD0561 applied.

FPT_TUD_EXT.2 Integrity for Installation and Update

FPT_TUD_EXT.2.1

The application shall be distributed using the format of the platform-supported package manager.

FPT_TUD_EXT.2.2

The application shall be packaged such that its removal results in the deletion of all traces of the application, with the exception of configuration settings, output files, and audit/log events.

FPT_TUD_EXT.2.3³

The application installation package shall be digitally signed such that its platform can cryptographically verify them prior to installation.

FPT_LIB_EXT.1 Use of Third Party Libraries

FPT_LIB_EXT.1.1

The application shall be packaged with only [no third-party libraries].

FPT_IDV_EXT.1 Software Identification and Versions

FPT_IDV_EXT.1.1

The application shall be versioned with [

• <u>SWID tags that comply with minimum requirements from ISO/IEC 19770-2:2015</u>

].

5.2.6 Trusted Path/Channel (FTP)⁴

FTP_DIT_EXT.1 Protection of Data in Transit

FTP_DIT_EXT.1.1

The application shall [

• invoke platform-provided functionality to encrypt all transmitted data with [TLS]

] between itself and another trusted IT product.

5.2.7 Identification and Authentication (FIA)⁵

FIA_X509_EXT.1 X.509 Certificate Validation

FIA_X509_EXT.1.1

The application shall [invoke platform-provided functionality] to validate certificates in accordance with the following rules:

- RFC 5280 certificate validation and certificate path validation.
- The certificate path must terminate with a trusted CA certificate.
- The application shall validate a certificate path by ensuring the presence of the basicConstraints extension, that the CA flag is set to TRUE for all CA certificates, and that any path constraints are met.
- The application shall validate that any CA certificate includes caSigning purpose in the key usage

³ TD0561 applied.

⁴ TD0587 applied.

⁵ TD0587 applied.

field

- The application shall validate the revocation status of the certificate using [OCSP as specified in <u>RFC 6960</u>, <u>CRL as specified in RFC 5759</u>].
- The application shall validate the extendedKeyUsage (EKU) field according to the following rules:
 - Certificates used for trusted updates and executable code integrity verification shall have the Code Signing Purpose (id-kp 3 with OID 1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.
 - Server certificates presented for TLS shall have the Server Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the EKU field.
 - Client certificates presented for TLS shall have the Client Authentication purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2) in the EKU field.
 - S/MIME certificates presented for email encryption and signature shall have the Email Protection purpose (id-kp 4 with OID 1.3.6.1.5.5.7.3.4) in the EKU field.
 - OCSP certificates presented for OCSP responses shall have the OCSP Signing purpose (idkp 9 with OID 1.3.6.1.5.5.7.3.9) in the EKU field.
 - Server certificates presented for EST shall have the CMC Registration Authority (RA) purpose (id-kp-cmcRA with OID 1.3.6.1.5.5.7.3.28) in the EKU field.

FIA_X509_EXT.1.2

The application shall treat a certificate as a CA certificate only if the basicConstraints extension is present and the CA flag is set to TRUE.

FIA_X509_EXT.2 X.509 Certificate Authentication

FIA_X509_EXT.2.1

The application shall use X.509v3 certificates as defined by RFC 5280 to support authentication for [TLS].

FIA_X509_EXT.2.2

When the application cannot establish a connection to determine the validity of a certificate, the application shall [not accept the certificate].

5.3 TOE SFR Dependencies Rationale for SFRs

The Protection Profile for Application Software contains all the requirements claimed in this Security Target. As such, the dependencies are not applicable since the PP has been approved.

5.4 Security Assurance Requirements

The TOE assurance requirements for this ST are taken directly from the Protection Profile for Application Software which are derived from Common Criteria Version 3.1, Revision 5. The assurance requirements are summarized in the table below.

Assurance Class	Components	Components Description
Development	ADV_FSP.1	Basic Functional Specification
Guidance Documentation	AGD_OPE.1	Operational User Guidance
	AGD_PRE.1	Preparative Procedures
Life-Cycle Support	ALC_CMC.1	Labeling of the TOE
	ALC_CMS.1	TOE CM Coverage
	ALC_TSU_EXT.1	Timely Security Updates
Security Target evaluation	ASE_CCL.1	Conformance claims
	ASE_ECD.1	Extended components definition

Assurance Class	Components	Components Description
	ASE_INT.1	ST introduction
	ASE_OBJ.1	Security objectives for the operational environment
	ASE_REQ.1	Stated security requirements
	ASE_TSS.1	TOE summary specification
Tests	ATE_IND.1	Independent Testing – Conformance
Vulnerability Assessment	AVA_VAN.1	Vulnerability Survey

Table 8 Security Assurance Requirements

5.5 Rationale for Security Assurance Requirements

The functional specification describes the external interfaces of the TOE; such as the means for a user to invoke a service and the corresponding response of those services. The description includes the interface(s) that enforces a security functional requirement, the interface(s) that supports the enforcement of a security functional requirement, and the interface(s) that does not enforce any security functional requirements. The interfaces are described in terms of their purpose (general goal of the interface), method of use (how the interface is to be used), parameters (explicit inputs to and outputs from an interface that control the behavior of that interface), parameter descriptions (tells what the parameter is in some meaningful way), and error messages (identifies the condition that generated it, what the message is, and the meaning of any error codes). The development evidence also contains a tracing of the interfaces to the SFRs described in this ST.

5.6 Assurance Measures

The TOE satisfies the identified assurance requirements. This section identifies the Assurance Measures applied by Perspecta Labs to satisfy the assurance requirements. The table below lists the details.

SAR Component	How the SAR will be met
ADV_FSP.1	The functional specification describes the external interfaces of the TOE; such as the means for a
	user to invoke a service and the corresponding response of those services. The description
	includes the interface(s) that enforces a security functional requirement, the interface(s) that
	supports the enforcement of a security functional requirement, and the interface(s) that does
	not enforce any security functional requirements. The interfaces are described in terms of their
	purpose (general goal of the interface), method of use (how the interface is to be used),
	parameters (explicit inputs to and outputs from an interface that control the behavior of that
	interface), parameter descriptions (tells what the parameter is in some meaningful way), and
	error messages (identifies the condition that generated it, what the message is, and the meaning
	of any error codes).
AGD_OPE.1	The Administrative Guide provides the descriptions of the processes and procedures of how the
	administrative users of the TOE can securely administer the TOE using the interfaces that provide
	the features and functions detailed in the guidance.
AGD_PRE.1	The Installation Guide describes the installation, generation, and startup procedures so that the
	users of the TOE can put the components of the TOE in the evaluated configuration.
ALC_CMC.1	The Configuration Management (CM) documents describe how the consumer identifies the
ALC_CMS.1	evaluated TOE. The CM documents identify the configuration items, how those configuration
	items are uniquely identified, and the adequacy of the procedures that are used to control and
	track changes that are made to the TOE. This includes details on what changes are tracked and
	how potential changes are incorporated.
ALC_TSU_EXT.1	Perspecta Labs uses a systematic method for identifying and providing security relevant updates
	to the TOEs users via its support infrastructure.
ATE_IND.1	Perspecta Labs will provide the TOE for testing.
AVA_VAN.1	Perspecta Labs will provide the TOE for testing.

Table 9 TOE Security Assurance Measures

6 TOE Summary Specification

This chapter identifies and describes how the Security Functional Requirements identified above are met by the TOE.

Requirement	Rationale
FCS_RBG_EXT.1	The TOE does not use DRBG functionality for its cryptographic
	operations.
	Due to its leveraging of platform cryptographic functionality there are no
	TOE functions covered by ST SFRs that directly use random numbers
	provided by the platform for cryptographic operations. All random
	numbers that are used as part of the platform protocols are invoked
	directly by the platform protocols and not by the TOE.
FCS_CKM_EXT.1	The application does not generate any asymmetric cryptographic keys.
FCS_STO_EXT.1	Digital certificates (and the keys associated with the digital certificates), which are the secure credentials used for connection authorization by the
	TOE, are stored within the Android key Chain on the platform. When
	needed, the user selects the credentials to use from the platform itself.
	To properly verify OCSP, the TOE access instances of the java
	java.security.KeyStore for passing and processing public certificates.
FDP DAR EXT.1	During operation of the TOE, no sensitive data is stored in non-volatile
	memory. It is not possible for the TOE to store such data because it never
	receives it.
FDP_DEC_EXT.1	During operation of the TOE, access to the underlying platform is limited
	to use of network connectivity hardware for establishment of secure
	communication channels.
	No sensitive information repositories are accessible.
FDP_NET_EXT.1	During regular operation of the TOE, secure TLS sessions may be
	established to provide secure channels for communications. These interactions are performed based on the following events:
	 Pressing the "Connect" button [User guide, Section 4 Operation]
FMT CFG EXT.1	The TOE does not come with any default credentials. It identifies itself to
	the TLS gateway that it connects to using a certificate and private key.
	These are provisioned onto the TOE by an administrator by uploading the
	necessary certificates to the Android platform.
FMT_MEC_EXT.1	The TOE maintains a restricted configuration with no management
FMT_SMF.1	functions being performed by users. Administrative users are the only
	types of users for this TOE.
FPR_ANO_EXT.1	The TOE does not transmit any PII over the network.
FPT_AEX_EXT.1	Because the TOE is a pure Java application it is not necessary to enable
	ASLR as Java natively checks array bounds. TOE is developed in Java using
	its built-in buffer overflow protection, which is enabled by default in the
	Android Studio/gradle scripts used to build the software.

	The TOE lowers are the following platforms ADIs:
FPT_API_EXT.1	The TOE leverages the following platform APIs:
	android.security.KeyChain
	• java.io.IOException;
	 java.io.InputStream;
	 java.net.InetAddress;
	 java.net.InetSocketAddress;
	 java.net.SocketException;
	 java.security.KeyStore;
	 java.security.PrivateKey;
	 java.security.PublicKey;
	 java.security.Signature;
	 java.security.cert.Certificate;
	 java.security.cert.X509Certificate;
	 javax.net.ssl.HostnameVerifier;
	 javax.net.ssl.KeyManager;
	 javax.net.ssl.KeyManagerFactory;
	 javax.net.ssl.SSLHandshakeException;
	 javax.net.ssl.SSLPeerUnverifiedException;
	 javax.net.ssl.SSLSession;
	 javax.net.ssl.SSLSocket;
	 javax.net.ssl.SSLSocketFactory;
	 javax.net.ssl.TrustManager;
	 javax.net.ssl.TrustManagerFactory;
	 javax.net.ssl.X509TrustManager;
FPT_LIB_EXT.1	The TOE does not come packaged with any third-party libraries.
FPT_TUD_EXT.1	The TOE leverages the underlying platform to check for updates and
ALC_TSU_EXT.1	patches to the application software. All updates are packaged in the
	Android Application Package (APK) format and distributed as an
	additional software package to the platform OS. All updates are
	digitally signed to ensure they are provided by Perspecta Labs, which is
	the only authorized source for software updates. In the event that any
	security vulnerability applies to SecureIO, Perspecta Labs will deliver an
	update within 30 days. Users of the SecureIO app should report any
	security related issues to the Perspecta Labs support team at secureio-
	support@perspectalabs.com. Customers can use this email address to
	request ability to send encrypted email, and Perspecta Labs support
	personnel will respond with a digitally signed email. Customers can then
	respond to the email with a digitally encrypted email, including any
	attachments.
FPT_TUD_EXT.2	The updates are packaged in the Android Application Package (APK)
	format.
	The updates are digitally signed by Perspecta Labs as publisher. The
	platform verifies the authenticity of the update by cryptographically
	verifying that the digital signature of the offered update matches the
	digital signature of the currently installed app.
FPT_IDV_EXT.1	The Application is versioned with SWID tags that comply with minimum
	requirements from ISO/IEC 19770-2:2015.

FTP_DIT_EXT.1	All communication sent between the TOE and any external IT entity is encrypted to protect all transmitted data. This communication is performed over TLS.
	Perspecta Labs SecureIO uses the Standard JAVA SSLContext in android to get access to the built in Android System libraries. This results in a socket Factory that SecureIO uses to create the TLS wrapped SSLSocket.
	SSLContext sslContext = SSLContext.getInstance("TLS"); SSLSocketFactory factory = sslContext.getSocketFactory();
	In addition, prior to the handshake being sent, SecureIO uses the setEnabledProtocols method on the resulting SSLSocket to force TLS 1.2 only, as well as setEnabledCipherSuites to limit the cipher suites to the ones listed on the connection Profile in the SecureIO application.
	The current list of allowable cipher suites is shown below: TLS_RSA_WITH_AES_128_CBC_SHA TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS_RSA_WITH_AES_128_CBC_SHA256 TLS_RSA_WITH_AES_128_CBC_SHA256 TLS_RSA_WITH_AES_256_CBC_SHA256 TLS_RSA_WITH_AES_256_CBC_SHA256 TLS_RSA_WITH_AES_256_CBC_SHA256 TLS_RSA_WITH_AES_256_CBC_SHA256 TLS_RSA_WITH_AES_256_CBC_SHA256
	socket.startHandshake();
FIA_X509_EXT.1 FIA_X509_EXT.2	Then all application network traffic is sent/received using the SSLSocket. Certificate validation and certificate path validation performed by the TOE is conformant with RFC 5280. The TOE is configured with a single certificate which is used for all communication.
	The TOE performs certificate validation and follows the certificate path validation algorithm as follows: The TOE supports chains of length four or greater. Certificates received as part of TLS connections are checked for a valid path up to the certificate authority roots (which must have the X509v3 Basic Constraint CA: True). The notBefore and notAfter dates included in certificates will be checked to be before and after the current time respectively. The TOE validates that the certificate path must terminate with a trusted CA certificate. The TOE validates that any CA certificate includes caSigning
	purpose in the key usage field. The TOE validates the extendedKeyUsage (EKU) field for the Server certificates presented for TLS to have the

Server Authentication purpose and OCSP certificates presented for OCSP responses shall have the OCSP Signing purpose in the EKU field.
Validity checks are performed by the TOE, using functionality implemented in the TOE. For certificates to successfully validate, the certificate cannot be revoked. Certificate revocation is determined using either a CRL check or OCSP. In addition to the revocation check, the certificate must have a valid basicConstraints extension and extendedKeyUsage field.
If for any reason the TOE is unable to determine the validity of a certificate, the certificate will not be accepted.

Table 10 TOE Summary Specification SFR Description

7 Acronym Table

Acronym	Definition
AES	Advanced Encryption Standard
ΑΡΙ	Application Programming Interface
АРК	Android Application Package
СС	Common Criteria
СМС	Certificate Management over CMS
CMS	Cryptographic Message Syntax
DRBG	Deterministic Random Bit Generator
HTTPS	Hypertext Transfer Protocol Secure
IEC	International Electrotechnical Commission
IP	Internet Protocol
ISO	International Organization for Standardization
ІТ	Information Technology
NIAP	Nation Information Assurance Partnership
OS	Operating System
PII	Personally Identifiable Information
PKG	Package file
РР	Protection Profile
RBG	Random Bit Generator
RSA	Rivest, Shamir, & Adleman
SAR	Security Assurance Requirement
SFR	Security Functional Requirement
ST	Security Target
SWID	Software Identification
TD	Technical Decision
TOE	Target of Evaluation
TLS	Transport Layer Security
TSF	TOE Security Functions

Acronym	Definition
TSS	TOE Summary Specification

Table 11 Acronyms