
Aruba Virtual Intranet Access (VIA) Client Version 4.3 Security Target Version 1.0
 2022-08-23

i

Aruba Virtual Intranet Access (VIA) Client Version 4.3 Security Target

Version 1.0

2022-08-23

Prepared for:

Aruba, a Hewlett Packard Enterprise Company
3333 Scott Blvd, Santa Clara, CA 94089

Prepared by:

Common Criteria Testing Laboratory
6841 Benjamin Franklin Drive

Columbia, Maryland 21046

ii

Table of Contents

1 Security Target Introduction ... 1

1.1 Security Target, Target of Evaluation, and Common Criteria Identification 1
1.2 Conformance Claims ... 2
1.3 Conventions .. 3

1.3.1 Acronyms ... 4
2 TOE Description .. 5

2.1 Product Overview ... 5
2.2 TOE Overview ... 5
2.3 TOE Architecture .. 6

2.3.1 Physical Boundary ... 7
2.3.2 Logical Boundary ... 8

2.4 TOE Documentation ... 11
3 Security Problem Definition .. 12

4 Security Objectives ... 13

4.1 Security Objectives for the TOE .. 13
4.2 Security Objectives for the Operational Environment ... 14

5 IT Security Requirements .. 16

5.1 Extended Requirements ... 16
5.2 TOE Security Functional Requirements .. 17

5.2.1 Cryptographic Support (FCS) ... 19
5.2.2 User Data Protection (FDP) ... 24
5.2.3 Identification and Authentication (FIA)... 24
5.2.4 Security Management (FMT)... 26
5.2.5 Privacy (FPR) .. 27
5.2.6 Protection of the TSF (FPT).. 27
5.2.7 Trusted Path/Channels (FTP)... 29

5.3 TOE Security Assurance Requirements .. 29
6 TOE Summary Specification .. 31

6.1 Cryptographic Support ... 31
6.1.1 FCS_CKM.1(1): Cryptographic Asymmetric Key Generation ... 33
6.1.2 FCS_CKM.1(2): Cryptographic Symmetric Key Generation ... 33
6.1.3 FCS_CKM.1/VPN: Cryptographic Key Generation (IKE) ... 34
6.1.4 FCS_CKM.2: Cryptographic Key Establishment ... 34
6.1.5 FCS_CKM_EXT.1: Cryptographic Key Generation Services .. 34
6.1.6 FCS_CKM_EXT.2: Cryptographic Key Storage ... 34
6.1.7 FCS_CKM_EXT.4: Cryptographic Key Destruction ... 36
6.1.8 FCS_COP.1(1): Cryptographic Operation – Encryption/Decryption 36
6.1.9 FCS_COP.1(2): Cryptographic Operation - Hashing... 37
6.1.10 FCS_COP.1(3): Cryptographic Operation - Signing .. 37

iii

6.1.11 FCS_COP.1(4): Cryptographic Operation - Keyed-Hash Message Authentication 37
6.1.12 FCS_IPSEC_EXT.1: IPsec ... 37
6.1.13 FCS_RBG_EXT.1: Random Bit Generation, FCS_RBG_EXT.2: Random Bit Generation from
Application .. 39
6.1.14 FCS_STO_EXT.1 Storage of Credentials ... 40

6.2 User Data Protection (FDP) .. 40
6.2.1 FDP_DAR_EXT.1: Encryption of Sensitive Application Data .. 40
6.2.2 FDP_DEC_EXT.1: Access to Platform Resources ... 40
6.2.3 FDP_NET_EXT.1: Network Communications ... 40
6.2.4 FDP_RIP.2; Full Residual Information Protection .. 40

6.3 Identification and Authentication .. 41
6.3.1 FIA_PSK_EXT.1: Pre-Shared Key Composition... 41
6.3.2 FIA_X509_EXT.1: X.509 Certificate Validation .. 41
6.3.3 FIA_X509_EXT.2: X.509 Certificate Authentication ... 41

6.4 Security Management .. 42
6.4.1 FMT_CFG_EXT.1: Secure by Default Configuration .. 42
6.4.2 FMT_MEC_EXT.1: Supported Configuration Mechanism ... 42
6.4.3 FMT_SMF.1: Specification of Management Functions ... 42
6.4.4 FMT_SMF.1/VPN: Specification of Management Functions (VPN) 42

6.5 Privacy .. 43
6.5.1 FPR_ANO_EXT.1: User Consent for Transmission of Personally Identifiable Information ... 43

6.6 Protection of the TSF .. 43
6.6.1 FPT_AEX_EXT.1: Anti-Exploitation Capabilities ... 43
6.6.2 FPT_API_EXT.1: Use of Supported Services and APIs ... 43
6.6.3 FPT_IDV_EXT.1: Software Identification and Versions ... 44
6.6.4 FPT_LIB_EXT.1: Use of Third Party Libraries ... 44
6.6.5 FPT_TST_EXT.1/VPN: TSF Self-Test (VPN Client) (Windows and Android) 44
6.6.6 FPT_TUD_EXT.1(1) (Android): Trusted Update, FPT_TUD_EXT.1(2) (Windows and Linux):
Trusted Update FPT_TUD_EXT.2: Integrity for Installation and Update .. 45

6.7 Trusted Path/Channels ... 46
6.7.1 FTP_DIT_EXT.1: Protection of Data in Transit ... 46

6.8 ALC_TSU_EXT.1: Timely Security Updates ... 46
7 Protection Profile Claims .. 47

8 TOE Summary Specification Rationale .. 49

Appendix A: Windows Platform APIs .. 51

Appendix B: Android Platform APIs .. 53

Appendix C: Linux Platform APIs ... 78

iv

List of Tables and Figures

Table 1: Acronyms ... 4
Table 2 Security Objectives for the TOE .. 13
Table 3: Security Objectives for the Operational Environment .. 14
Table 4: TOE Security Functional Components ... 17
Table 5: Assurance Components... 29
Table 6: Cryptographic Functions ... 32
Table 7 Key Purpose/Key Storage/Key Destruction .. 34
Table 8: SFR Protection Profile Sources .. 47
Table 9: Security Functions vs. Requirements Mapping ... 49

Figure 1: VIA Topography .. 6

Aruba Virtual Intranet Access (VIA) Client Version 4.3 Security Target Version 1.0
 2022-08-23

1

1 Security Target Introduction

This section introduces the Target of Evaluation (TOE) and provides the Security Target (ST) and TOE
identification, ST and TOE conformance claims, ST conventions, glossary and list of abbreviations.

The TOE is the Aruba Virtual Intranet Access (VIA) Client version 4.3. The TOE is a VPN client application
that remote workers and mobile users can install on their computers or mobile devices to securely
connect to their enterprise network from remote locations using IPsec.

The focus of this evaluation is on the TOE functionality supporting the claims in the Protection Profile for
Application Software, version 1.3 ([PP_APP_v1.3]) and PP-Module for VPN Clients, version 2.3
([MOD_VPNC_V2.3]). The security functionality specified in [PP_APP_v1.3] and [MOD_VPNC_V2.3]
includes protection of communications between the TOE and external IT entities, ability to verify the
source and integrity of updates to the TOE, and use of NIST-validated cryptographic mechanisms.

The Security Target (ST) includes the following additional sections:

• TOE Description (Section 2)—provides an overview of the TOE and describes the physical and
logical boundaries of the TOE

• Security Problem Definition (Section 3)—describes the threats and assumptions that define the
security problem to be addressed by the TOE and its environment

• Security Objectives (Section 4)—describes the security objectives for the TOE and its operational
environment necessary to counter the threats and satisfy the assumptions that define the security
problem

• IT Security Requirements (Section 5)—specifies the security functional requirements (SFRs) and
security assurance requirements (SARs) to be met by the TOE

• TOE Summary Specification (Section 6)—describes the security functions of the TOE and how they
satisfy the SFRs

• Protection Profile Claims (Section 7)—provides rationale supporting the claims for conformance
of the ST and the TOE to [PP_APP_v1.3] and [MOD_VPNC_V2.3]

• TOE Summary Specification Rationale (Section 8)—provides mappings and rationale for the
security problem definition, security objectives, security requirements, and security functions to
justify their completeness, consistency, and suitability.

1.1 Security Target, Target of Evaluation, and Common Criteria Identification

ST Title: Aruba Virtual Intranet Access (VIA) Client Version 4.3 Security Target

ST Version: Version 1.0

ST Date: 2022-08-23

Target of Evaluation (TOE) Identification: Aruba Virtual Intranet Access (VIA) Client version 4.3.

TOE Versions: All of the following platforms will be supported by the application:

2

• Windows 10 (64-bit)

• Android 11

• Linux (Ubuntu 18.04)

TOE Developer: Aruba

Evaluation Sponsor: Aruba

CC Identification: Common Criteria for Information Technology Security Evaluation, Version 3.1, Revision
5, April 2017

1.2 Conformance Claims

This TOE claims exact conformance to the following CC specifications:

• PP-Configuration for Application Software and Virtual Private Network (VPN) Clients, Version

1.0, 2021-08-13, which includes the following:

o Protection Profile for Application Software, version 1.3, 2019-03-01 [PP_APP_V1.3]

o PP-Module for Virtual Private Network (VPN) Clients, version 2.3, 2021-08-10

[MOD_VPNC_V2.3].

This TOE and ST are conformant to Part 2 (extended) and Part 3 (extended) of Common Criteria Version
3.1, Revision 5, dated April 2017. The TOE does not claim conformance to any packages.

The following NIAP Technical Decisions for [PP_APP_v1.3] and [MOD_VPNC_V2.3] apply to the materials
to which the TOE conforms, the TOE evidence, or how the TOE is evaluated:

• TD0622: VPNC MOD FTP_DIT_EXT.1 corrections

• TD0601: X.509 SFR Applicability in App PP

• TD0600: Conformance claim sections updated to allow for MOD_VPNC_V2.3

• TD0598: Expanded AES Modes in FCS_COP for App PP

• TD0582: PP-Configuration for Application Software and Virtual Private Network (VPN) Clients
now allowed

• TD0561: Signature verification update

• TD0554: iOS/iPadOS/Android AppSW Virus Scan

• TD0548: Integrity for installation tests in AppSW PP 1.3

• TD0544: Alternative testing methods for FPT_AEX_EXT.1.1

• TD0543: FMT_MEC_EXT.1 evaluation activity update

• TD0519: Linux symbolic links and FMT_CFG_EXT.1

https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0622
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0601
D0600:%20%20Conformance%20claim%20sections%20updated%20to%20allow%20for%20MOD_VPNC_V2.3
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0598
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0582
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0561
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0554
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0548
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0544
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0543
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0519

3

• TD0515: Use Android APK manifest in test

• TD0498: Application Software PP Security Objectives and Requirements Rationale

• TD0495: FIA_X509_EXT.1.2 Test Clarification

• TD0465: Configuration Storage for .NET Apps

• TD0445: User Modifiable File Definition

• TD0437: Supported Configuration Mechanism

• TD0435: Alternative to SELinux for FPT_AEX_EXT.1.3

• TD0434: Windows Desktop Applications Test

• TD0427: Reliable Time Source

• TD0416: Correction to FCS_RBG_EXT.1 Test Activity

Technical Decisions not applicable to the evaluation:

• TD0510: Obtaining random bytes for iOS/macOS

o The TD is not applicable since iOS/macOS is not included in the evaluation.

1.3 Conventions

The following conventions have been applied in this document:

• Security Functional Requirements – Part 2 of the CC defines the approved set of operations that
may be applied to functional requirements: iteration, assignment, selection, and refinement.

o Iteration: allows a component to be used more than once with varying operations. In the
ST, iteration is indicated either by adding a string starting with “/” (e.g.
“FPT_TST_EXT.1/VPN”) or by using a bracketed number (e.g. FCS_COP.1(1)).

o Assignment: allows the specification of an identified parameter. Assignments are
indicated using bold and are surrounded by brackets (e.g., [assignment]). Note that an
assignment within a selection would be identified in italics and with embedded bold
brackets (e.g., [[selected-assignment]]).

o Selection: allows the specification of one or more elements from a list. Selections are
indicated using bold italics and are surrounded by brackets (e.g., [selection]).

o Refinement: allows the addition of details. Refinements are indicated using bold, for
additions, and strike-through, for deletions (e.g., “… all objects …” or “… some big things
…”). Note that ‘cases’ that are not applicable in a given SFR have simply been removed
without any explicit identification.

• Other sections of the ST – Other sections of the ST use bolding to highlight text of special interest,
such as captions.

https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0515
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0498
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0495
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0465
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0445
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0437
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0435
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0434
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0427
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0416
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0510

4

1.3.1 Acronyms

Table 1: Acronyms

Acronym Definition

AES Advanced Encryption Standard

API Application Programming Interface

CBC Cipher-Block Chaining

CA Certificate Authority

CAVP Cryptographic Algorithm Validation Program

CM Configuration Management

CSP Critical Security Parameter

DH Diffie-Hellman

ECC Elliptic-curve cryptography

FFC Finite Field Cryptography

FIPS Federal Information Processing Standard

HMAC Hashed Message Authentication Code

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IPsec Internet Protocol Security

NIST National Institute of Standards and Technology

OCSP Online Certificate Status Protocol

RSA Rivest, Shamir and Adleman (algorithm for public-key cryptography)

SAR Security Assurance Requirement

SFR Security Functional Requirement

SHA Secure Hash Algorithm

ST Security Target

TLS Transport Layer Security

TOE Target of Evaluation

TSF TOE Security Functions

VIA Aruba Virtual Intranet Access

5

2 TOE Description

2.1 Product Overview

VIA is a part of the Aruba remote networks solution intended for teleworkers and mobile users. VIA
detects the network environment (trusted and untrusted) of the user and connects the users to the
enterprise network. A trusted network refers to a protected office network that allows users to access the
corporate intranet directly. Untrusted networks are public Wi-Fi hotspots, such as airports, cafes, or home
networks.

The VIA solution includes VIA Client and the Mobility Controller. The Mobility Controller running ArubaOS
delivers network services that always on network with controller clustering, maximize Wi-Fi performance,
ensure seamless roaming, and extends secure VPN access for Remote APs, Instant APs and VIA VPN clients.
Note that the Mobility Controller is not part of the Common Criteria evaluation. The product relies on a
platform-provided mechanism to establish HTTPS connectivity with the Mobility Controller to acquire VPN
configuration settings. This is an environmental mechanism and is therefore not within the TOE boundary.

2.2 TOE Overview

The Target of Evaluation (TOE) is the Aruba Virtual Intranet Access (VIA) Client version 4.3. The TOE is a
software application with IPsec VPN client capability.

With respect to the security functionality of the TOE, the TSF is limited to the relevant functionality that
is defined in the claimed [PP_APP_v1.3] and [MOD_VPNC_V2.3]. The logical boundary of the TOE is
summarized in section 2.3.2. However, the following general capabilities are considered to be within the
scope of the TOE:

• Cryptographic Support: The TOE implements NIST CAVP approved cryptographic algorithms. The
TOE protects communication between itself and an Aruba Mobility Controller over an
unprotected network using IPsec and uses various mechanisms to protect credential data at rest.

• User Data Protection: The TOE informs a user of hardware and software resources the TOE
accesses. The TOE leverages platform-provided functionality to encrypt sensitive data and allows
network communications to be initiated by the user in order to connect to the VPN Gateway.

• Identification and Authentication: The TOE provides the ability to use, store, and protect X.509
certificates that are used for IPsec Virtual Private Network (VPN) connections. The TOE performs
peer authentication using pre-shared keys or certificates.

• Security Management: The TOE and its IPsec VPN are fully configurable by a combination of
functions provided directly by the TOE and those available to the associated VPN gateway.

• Privacy: The TOE does not transmit PII over a network.

• Protection of the TSF: The TOE performs self-tests that cover the TOE as well as the functions
necessary to securely update the TOE. The TOE includes the use only documented platform APIs.

• Trusted Path/Channel: The TOE implements IPsec to establish a trusted channel to an external
VPN gateway.

6

This ST focuses on the security functionality of application software and IPsec VPN capabilities of the TOE.
The TOE provides secure remote network connectivity for Android, Linux, and Windows mobile devices
and workstations. The TOE has two primary purposes:

• to provide secure corporate access to employee workstations and smartphones from anywhere

• to provide ease-of-use for the end users and network administrators

The IPsec VPN capabilities are the primary function of the TOE. IPsec is used by the TOE to protect
communication between itself and an Aruba Mobility Controller over an unprotected network.

VIA can be downloaded directly from an Aruba Mobility Controller, pushed out using enterprise
management tools, installed manually, or install the Android version from the Google Play Store. An Aruba
Mobility Controller is required to terminate connections from a VIA client – VIA is not a general-purpose
VPN client that works with third-party VPN gateways.

2.3 TOE Architecture

The TOE provides secure connectivity for users when accessing an enterprise or corporate resource
(example: workstation, server) from an untrusted or trusted network connection. By default, the TOE
automatically launches and establishes a remote connection when the user logs in to their system from
an untrusted network.

The TOE runs on an end-user device and communicates with a gateway located on a Mobility Controller.
The server component is used to manage the client and ensure policies are enforced. The Mobility
Controller maintains certain VIA configuration profiles, such as the VIA authentication profile, the VIA
connection profile, and the VIA web authentication profile. Each profile plays an important role in
authenticating the users and establishing a secure connection. When multiple authentication profiles are
available, the VIA client prompts the user to select an authentication profile.

The first time a connection is established, a user opens the VIA client and enters the gateway name,
username, and password. VIA then connects to the gateway over an HTTPS channel and attempts to
authenticate using the user supplied credentials. The TSF relies on the underlying OS platform for
establishment of the HTTPS channel; it is not part of the TOE itself. This connection is used to retrieve
configuration settings for the IPsec connection and any site-specific branding (e.g. logo graphics).

If the VIA web authentication list has more than one VIA authentication profile, the user can choose a VIA
authentication profile from the available ones. After successful authentication, the VIA client downloads
the appropriate VIA connection profile and establishes the IPsec connection if the user is connected to an
untrusted network.

At a protocol level, VIA operates over UDP port 4500, which is defined for IKE/IPsec traversal of NATs in
RFC 3947. VIA uses HTTPS over TCP port 443 in order to contact the authentication server and download
configuration profile updates before establishing each IKE/IPsec connection. The VIA topography is shown
in the figure below.

Figure 1: VIA Topography

7

The OCSP server is required for the TOE to be able to perform certificate validation in accordance with
the claim of FIA_X509_EXT.1 (see section 5.2.3.2). The Mobility Controller is required in the operational
environment because the TOE uses it as its VPN gateway. The RADIUS (EAP Server) component is shown
on the diagram because the Mobility Controller also functions as a wireless access system that uses EAP
for client authentication. However, this functionality is separate from the VPN Client functionality and is
outside the scope of the TOE and its operational environment; it is just included because a typical Mobility
Controller deployment will have one present for its other functions.

2.3.1 Physical Boundary

The TOE is a software application running on a general-purpose or mobile device operating system.

These platforms and their corresponding CC certificates are as follows:

• Windows:

o Microsoft Windows 10 and Server version 1903 (May 2019 Update) (https://www.niap-
ccevs.org/Product/CompliantCC.cfm?CCID=2019.1244)

o Windows 10 and Windows Server 2019 version 1809 (https://www.niap-
ccevs.org/Product/CompliantCC.cfm?CCID=2019.1204)

o Windows 10 and Windows Server (April 2018 Update) (https://www.niap-
ccevs.org/Product/CompliantCC.cfm?CCID=2019.1018)

• Android:

https://www.niap-ccevs.org/Product/CompliantCC.cfm?CCID=2019.1244
https://www.niap-ccevs.org/Product/CompliantCC.cfm?CCID=2019.1244
https://www.niap-ccevs.org/Product/CompliantCC.cfm?CCID=2019.1204
https://www.niap-ccevs.org/Product/CompliantCC.cfm?CCID=2019.1204
https://www.niap-ccevs.org/Product/CompliantCC.cfm?CCID=2019.1018
https://www.niap-ccevs.org/Product/CompliantCC.cfm?CCID=2019.1018

8

o Samsung Galaxy Devices on Android 11 – Fall (CCEVS-VR-VID11211-2021)

• Linux:

o Ubuntu 18.04 – (https://www.commoncriteriaportal.org/files/epfiles/ST%20-
%20Canonical%20Ubuntu%20Server%2018.04%20LTS.pdf)

Different platform versions of the TOE rely on their underlying OS platforms to varying extents. For cases
where these differ within an individual SFR, the SFRs themselves are iterated to show which claims apply
to which platform versions. In all cases, the TSF will rely on the OS platform to establish HTTPS connectivity
to the VPN gateway for acquisition of IPsec configuration settings; this is outside the TOE boundary so no
SFRs apply to this.

2.3.1.1 Software Requirements

Windows

• Microsoft Windows 10

Windows clients running VIA on a Windows Enterprise platform using Secure Boot require the
Long-Term Servicing Channel (LTSC) version of Windows 10.

Android

• Device is running Android 11.

Linux

• Device is running Ubuntu 18.04.

2.3.1.2 Hardware Requirements

The TOE is the Aruba Virtual Intranet Access (VIA) client version 4.3 running on general-purpose personal
computing and mobile device hardware. The tested configuration included the following hardware
devices:

• Windows – Windows 10 64-bit on HP Elitebook x360 830 G5 with the Intel Core i5-11400H

processor.

• Android – Android 11 on Samsung Galaxy S20 FE 5G with the Snapdragon 865 processor.

• Linux – Ubuntu 18.04.1 on HPE EliteBook 840 G3 with the Intel Core i7-6600U processor.

2.3.2 Logical Boundary

This section summarizes the security functions provided by Aruba Virtual Intranet Access (VIA) client:

• Cryptographic support

• User data protection

• Identification and authentication

https://www.niap-ccevs.org/Product/Compliant.cfm?PID=11211
https://www.commoncriteriaportal.org/files/epfiles/ST%20-%20Canonical%20Ubuntu%20Server%2018.04%20LTS.pdf
https://www.commoncriteriaportal.org/files/epfiles/ST%20-%20Canonical%20Ubuntu%20Server%2018.04%20LTS.pdf

9

• Security management

• Privacy

• Protection of the TSF

• Trusted path/channel

2.3.2.1 Cryptographic Support

The TOE implements NIST CAVP approved cryptographic algorithms.

The TOE does not store keys unencrypted in persistent storage. While the TOE manipulates keys, on all
platforms, the TOE platform’s key storage is used. The TOE also uses various mechanisms to protect
credential data at rest.

The IPsec implementation is the primary function of the TOE. IPsec is used by the TOE to protect
communication between itself and an Aruba Mobility Controller over an unprotected network.

The TOE implements IKEv1 in tunnel mode only and main mode as defined in RFCs 2407, 2408, 2409, RFC
4109. Aggressive mode is not supported for IKEv1 Phase 1 exchanges. The TSF supports hash functions
defined in RFC 4868 and supports XAUTH. Extended sequence numbers are not supported. The TOE
performs peer authentication using certificates or pre-shared keys.

The TOE implements IKEv2 as defined in RFCs 7296 (with mandatory support for NAT traversal as specified
in section 2.23), RFC 8784, RFC 8247 in tunnel mode only. The TOE does not offer transport mode as a
configuration option. The TOE implements peer authentication using RSA certificates or ECDSA certificates
that conform to RFC 4945 and pre-shared keys. If certificates are used, the TOE ensures that the
distinguished name (DN) contained in a certificate matches the expected DN for the entity attempting to
establish a connection and ensures that the certificate has not been revoked (using the Online Certificate
Status Protocol [OCSP] in accordance with RFC 6960).

The TOE implements the IPsec protocol as specified in RFC 4301; however the TOE relies upon the VPN
Gateway to ensure that the cryptographic algorithms and key sizes negotiated during the IKEv1 and IKEv2
negotiation ensure that the security strength of the IKE_SA is greater than or equal to that of the CHILD_SA

The IKEv1 and IKEv2 SA lifetimes are configured by the VPN Gateway based upon the length of time.
Length of time includes 24 hours or less for Phase 1 and 8 hours or less for Phase 2.

2.3.2.2 User Data Protection

The TOE informs a user of hardware and software resources the TOE accesses. It uses the platform’s
permission mechanism to get a user’s approval for access as part of the installation process. The TOE
leverages platform-provided functionality to encrypt sensitive data and allows network communications
to be initiated by the user in order to connect to the VPN Gateway. The TOE can also provide always-on
functionality for application-initiated network communication.

The TOE ensures that residual information is protected from potential reuse in accessible objects such as
network packets.

10

2.3.2.3 Identification and Authentication

The TOE provides the ability to use, store, and protect X.509 certificates that are used for IPsec Virtual
Private Network (VPN) connections. The TOE performs peer authentication using pre-shared keys or
certificates.

Pre-shared keys apply to IKEv1 only. Character limits and character set are not enforced programmatically;
therefore, the administrative guidance includes instructions on setting strong pre-shared keys.

2.3.2.4 Security Management

The TOE and its IPsec VPN are fully configurable by a combination of functions provided directly by the
TOE and those available to the associated VPN gateway. The TOE is not provided with any default
credentials or pre-shared keys. All external configuration comes from the Mobility Controller. The
configuration options for the TOE consists of the URL of the gateway and the credentials used for the
connection. The configuration options are stored and set using the mechanisms supported by the
platform.

2.3.2.5 Privacy

The TOE does not transmit PII over a network.

2.3.2.6 Protection of the TSF

The TOE performs self-tests that cover the TOE as well as the functions necessary to securely update the
TOE.

The TOE includes the use only documented platform APIs.

For each platform, the application does not allocate any memory region with both write and execute
permissions nor does the TOE request to map memory to an explicit address. The TOE does not write user-
modifiable files to directories that contain executable files. The application is built with stack-based buffer
overflow protection enabled.

Aruba provides a version control system for its software components. The TOE has a unique software
versioning that identifies major versions and their subsequent maintenance releases.

The About tab on the TOE displays the current system image version number for the TOE. The TOE
platforms support loading updates by the administrator. For Windows and Linux platforms, the
administrator obtains the update in the form of an installer through the Aruba Mobility Controller or the
Aruba Support Portal. The update is verified using a RSA 2048 with SHA-1 digital signature. For Android
versions, the application and signature are provided to and verified by the Google Play Store.

The TOE does not download, modify, replace or update its own binary code. The application is packaged
such that its removal results in the deletion of all traces of the application, with the exception of
configuration settings and output files.

11

2.3.2.7 Trusted Path/Channel

TOE connects to the server over an HTTPS connection and attempts to authenticate using the user
supplied credentials. The cryptography for the initial HTTPS connection is provided by the platform and is
therefore outside the scope of the TOE. The IKE/IPsec transversal is secured using the TOE cryptography.

The TOE acts as a VPN client using IPsec to established secure channels to corresponding VPN gateways.

2.4 TOE Documentation

The administrative guides are identified as online documents:

• https://www.arubanetworks.com/techdocs/VIA/4x/Content/home.htm

• Aruba, a Hewlett Packard Enterprise Company Virtual Intranet Access (VIA) 4.x Client Common
Criteria Guidance, Version 1.2, March 2022

https://www.arubanetworks.com/techdocs/VIA/4x/Content/home.htm

12

3 Security Problem Definition

This security target includes by reference the Security Problem Definition from the [PP_APP_v1.3] and
[MOD_VPNC_V2.3]. The Security Problem Definition consists of threats that a conformant TOE is expected
to address and assumptions about the operational environment of the TOE.

In general, the [PP_APP_v1.3] and [MOD_VPNC_V2.3] have presented a Security Problem Definition
appropriate for application software that provides a Virtual Private Network used to establish a secure
IPsec connection between a host platform and a remote system. As such, the [PP_APP_v1.3] and
[MOD_VPNC_V2.3] Security Problem Definition applies to the TOE.

13

4 Security Objectives

This ST is conformant to the Protection Profile for Application Software, Version 1.3, 2019-03-01
[PP_APP_v1.3] and PP-Module for Virtual Private Network (VPN) Clients, Version 2.3, 2021-08-10
[MOD_VPNC_V2.3].

This section reproduces only the corresponding Security Objectives for the TOE and the Security
Objectives of the Operational Environment for reader convenience. The [PP_APP_v1.3] and
[MOD_VPNC_V2.3] offer additional information about the identified security objectives but have not been
reproduced here and the [PP_APP_v1.3] and [MOD_VPNC_V2.3] should be consulted if there is interest
in that material.

In general, the [PP_APP_v1.3] and [MOD_VPNC_V2.3] have defined Security Objectives appropriate for a
software application and IPsec VPN client and as such are applicable to the Aruba Virtual Intranet Access
(VIA) Client TOE.

4.1 Security Objectives for the TOE

Table 2 Security Objectives for the TOE

Objective Description

[PP_APP_v1.3]

O.INTEGRITY Conformant TOEs ensure the integrity of their installation and
update packages, and also leverage execution environment-based
mitigations. Software is seldom, if ever, shipped without errors. The
ability to deploy patches and updates to fielded software with
integrity is critical to enterprise network security. Processor
manufacturers, compiler developers, execution environment
vendors, and operating system vendors have developed execution
environment-based mitigations that increase the cost to attackers
by adding complexity to the task of compromising systems.

Application software can often take advantage of these
mechanisms by using APIs provided by the runtime environment or
by enabling the mechanism through compiler or linker options.

O.QUALITY To ensure quality of implementation, conformant TOEs leverage
services and APIs provided by the runtime environment rather than
implementing their own versions of these services and APIs. This is
especially important for cryptographic services and other complex
operations such as file and media parsing. Leveraging this platform
behavior relies upon using only documented and supported APIs.

O.MANAGEMENT To facilitate management by users and the enterprise, conformant
TOEs provide consistent and supported interfaces for their security-
relevant configuration and maintenance. This includes the
deployment of applications and application updates through the
use of platform-supported deployment mechanisms and formats, as
well as providing mechanisms for configuration. This also includes
providing control to the user regarding disclosure of any PII.

14

O.PROTECTED_STORAGE To address the issue of loss of confidentiality of user data in the
event of loss of physical control of the storage medium, conformant
TOEs will use data-at-rest protection. This involves encrypting data
and keys stored by the TOE in order to prevent unauthorized access
to this data. This also includes unnecessary network
communications whose consequence may be the loss of data.

O.PROTECTED_COMMS To address both passive (eavesdropping) and active (packet
modification) network attack threats, conformant TOEs will use a
trusted channel for sensitive data. Sensitive data includes
cryptographic keys, passwords, and any other data specific to the
application that should not be exposed outside of the application.

[MOD_VPNC_V2.3]

O.AUTHENTICATION To address the issues associated with unauthorized disclosure of
information in transit, a compliant TOE’s authentication ability
(IPsec) will allow the TSF to establish VPN connectivity with a
remote VPN gateway or peer and ensure that any such connection
attempt is both authenticated and authorized.

O.CRYPTOGRAPHIC_FUNCTIONS To address the issues associated with unauthorized disclosure of
information in transit, a compliant TOE will implement
cryptographic capabilities. These capabilities are intended to
maintain confidentiality and allow for detection and modification of
data that is transmitted outside of the TOE.

O.KNOWN_STATE The TOE will provide sufficient measures to ensure it is operating in
a known state. At minimum this includes management functionality
to allow the security functionality to be configured and self-test
functionality that allows it to assert its own integrity. It may also
include auditing functionality that can be used to determine the
operational behavior of the TOE.

O.NONDISCLOSURE To address the issues associated with unauthorized disclosure of
information at rest, a compliant TOE will ensure that non-persistent
data is purged when no longer needed. The TSF may also
implement measures to protect against the disclosure of stored
cryptographic keys and data through implementation of protected
storage and secure erasure methods. The TOE may optionally also
enforce split-tunneling prevention to ensure that data in transit
cannot be disclosed inadvertently outside of the IPsec tunnel.

4.2 Security Objectives for the Operational Environment

Table 3: Security Objectives for the Operational Environment

Objective Description

[PP_APP_v1.3]

15

OE.PLATFORM The TOE relies upon a trustworthy computing platform for its
execution. This includes the underlying operating system and any
discrete execution environment provided to the TOE.

OE.PROPER_USER The user of the application software is not willfully negligent or
hostile, and uses the software within compliance of the applied
enterprise security policy.

OE.PROPER_ADMIN The administrator of the application software is not careless,
willfully negligent or hostile, and administers the software within
compliance of the applied enterprise security policy.

[MOD_VPNC_V2.3]

OE.NO_TOE_BYPASS Information cannot flow onto the network to which the VPN client’s
host is connected without passing through the TOE.

OE.PHYSICAL Physical security, commensurate with the value of the TOE and the
data it contains, is assumed to be provided by the environment.

OE.TRUSTED_CONFIG Personnel configuring the TOE and its operational environment will
follow the applicable security configuration guidance.

16

5 IT Security Requirements

This section defines the Security Functional Requirements (SFRs) and Security Assurance Requirements
(SARs) that serve to represent the security functional claims for the TOE and to scope the evaluation effort.

The SFRs have all been drawn from the [PP_APP_v1.3] and the [MOD_VPNC_V2.3].

As a result, any selection, assignment, or refinement operations already performed by that Protection
Profile (PP) on the claimed SFRs are not identified here (i.e., they are not formatted in accordance with
the conventions specified in section 1.3 of this ST). Formatting conventions are only applied on SFR text
that was chosen at the ST author’s discretion.

The TOE and ST claim the following additional requirements beyond the minimum that is required by the
claimed PP-Configuration. Note per the claim of Exact Conformance that these additional requirements
are drawn exclusively from those specified in the PP and PP-Module from the PP-Configuration as optional
and selection-based requirements:

• From [PP_APP_V1.3]: FCS_CKM.1(1), FCS_CKM.1(2), FCS_CKM.2, FCS_COP.1(1), FCS_COP.1(2),
FCS_COP.1(3), FCS_COP.1(4), FCS_RBG_EXT.2, FIA_X509_EXT.1, FIA_X509_EXT.2, and
FPT_TUD_EXT.2.

• From [MOD_VPNC_V2.3]: FIA_PSK_EXT.1

5.1 Extended Requirements

All of the extended requirements in this ST have been drawn from the [PP_APP_v1.3] and the
[MOD_VPNC_V2.3]. This ST references the following extended SFRs and SARs.

• FCS_RBG_EXT.1: Random Bit Generation Services

• FCS_RBG_EXT.2: Random Bit Generation from Application

• FCS_CKM_EXT.1: Cryptographic Key Generation Services

• FCS_CKM_EXT.2: Cryptographic Key Storage

• FCS_CKM_EXT.4: Cryptographic Key Destruction

• FCS_STO_EXT.1: Storage of Credentials

• FCS_IPSEC_EXT.1: IPsec

• FDP_DEC_EXT.1: Access to Platform Resources

• FDP_NET_EXT.1 Network Communications

• FDP_DAR_EXT.1: Encryption Of Sensitive Application Data

• FIA_PSK_EXT.1: Pre-Shared Key Composition

• FIA_X509_EXT.1 X.509: Certificate Validation

17

• FIA_X509_EXT.2: X.509 Certificate Authentication

• FMT_CFG_EXT.1: Secure by Default Configuration

• FMT_MEC_EXT.1: Supported Configuration Mechanism

• FPR_ANO_EXT.1: User Consent for Transmission of Personally Identifiable Information

• FPT_AEX_EXT.1: Anti-Exploitation Capabilities

• FPT_API_EXT.1: Use of Supported Services and APIs

• FPT_IDV_EXT.1: Software Identification and Versions

• FPT_LIB_EXT.1: Use of Third Party Libraries

• FPT_TUD_EXT.1: Trusted Update1

• FPT_TUD_EXT.2: Integrity for Installation and Update

• FPT_TST_EXT.1: TSF Self-Test (VPN Client)2

• FTP_DIT_EXT.1: Protection of Data in Transit

• ALC_TSU_EXT.1 Timely Security Updates

5.2 TOE Security Functional Requirements

Table 4 identifies the SFRs satisfied by the TOE.

Table 4: TOE Security Functional Components

Requirement Class Requirement Component

FCS: Cryptographic Support FCS_CKM.1(1): Cryptographic Asymmetric Key Generation

FCS_CKM.1(2): Cryptographic Symmetric Key Generation

FCS_CKM.1/VPN: Cryptographic Key Generation (IKE)

FCS_CKM_EXT.1: Cryptographic Key Generation Services

FCS_CKM.2: Cryptographic Key Establishment

FCS_CKM_EXT.2: Cryptographic Key Storage

FCS_CKM_EXT.4: Cryptographic Key Destruction

1 The ST identifies multiple iterations of this SFR.

2 The ST iterates this SFR per its definition in [MOD_VPNC_V2.3].

18

Requirement Class Requirement Component

FCS_COP.1(1): Cryptographic Operation – Encryption/Decryption

FCS_COP.1(2): Cryptographic Operation - Hashing

FCS_COP.1(3): Cryptographic Operation - Signing

FCS_COP.1(4): Cryptographic Operation - Keyed-Hash Message Authentication

FCS_IPSEC_EXT.1: IPsec

FCS_RBG_EXT.1: Random Bit Generation Services

FCS_RBG_EXT.2: Random Bit Generation from Application

FCS_STO_EXT.1: Storage of Credentials

FDP: User Data Protection FDP_DAR_EXT.1: Encryption Of Sensitive Application Data

FDP_DEC_EXT.1: Access to Platform Resources

FDP_NET_EXT.1: Network Communications

FDP_RIP.2: Full Residual Information Protection

FIA: Identification and
Authentication

FIA_PSK_EXT.1: Pre-Shared Key Composition

FIA_X509_EXT.1 X.509: Certificate Validation

FIA_X509_EXT.2: X.509 Certificate Authentication

FMT: Security Management FMT_CFG_EXT.1: Secure by Default Configuration

FMT_MEC_EXT.1: Supported Configuration Mechanism

FMT_SMF.1: Specification of Management Functions

FMT_SMF.1/VPN: Specification of Management Functions (VPN)

FPR: Privacy FPR_ANO_EXT.1: User Consent for Transmission of Personally Identifiable
Information

FPT: Protection of the TSF FPT_AEX_EXT.1: Anti-Exploitation Capabilities

FPT_API_EXT.1: Use of Supported Services and APIs

FPT_IDV_EXT.1: Software Identification and Versions

FPT_LIB_EXT.1: Use of Third Party Libraries

FPT_TST_EXT.1/VPN(1): TSF Self-Test (VPN Client) (Windows and Linux)

FPT_TST_EXT.1/VPN(2): TSF Self-Test (VPN Client) (Android)

19

Requirement Class Requirement Component

FPT_TUD_EXT.1(1): Trusted Update (Android)

FPT_TUD_EXT.1(2): Trusted Update (Windows and Linux)

FPT_TUD_EXT.2: Integrity for Installation and Update

FTP: Trusted Path/Channels FTP_DIT_EXT.1: Protection of Data in Transit

5.2.1 Cryptographic Support (FCS)

5.2.1.1 FCS_CKM.1(1) Cryptographic Asymmetric Key Generation

FCS_CKM.1.1(1) The application shall [implement functionality] to generate asymmetric
cryptographic keys in accordance with a specified cryptographic key generation
algorithm

• [ECC schemes] using [“NIST curves” P-256, P-384 and [no other curves]] that
meet the following: [FIPS PUB 186-4, “Digital Signature Standard (DSS)”,
Appendix B.4]; and,

[

• [FFC schemes] using Diffie-Hellman group 14 that meet the following: [RFC
3526, Section 3]]

].

5.2.1.2 FCS_CKM.1(2) Cryptographic Symmetric Key Generation

FCS_CKM.1.1(2) The application shall generate symmetric cryptographic keys using a Random Bit
Generator as specified in FCS_RBG_EXT.1 and specified cryptographic key sizes

• 128 bit,

• 256 bit

].

5.2.1.3 FCS_CKM.1/VPN Cryptographic Key Generation (IKE)

FCS_CKM.1.1/VPN The TSF shall [implement functionality] to generate asymmetric cryptographic
keys used for IKE peer authentication in accordance with: [

• FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Appendix B.3 for RSA
schemes;

• FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Appendix B.4 for ECDSA
schemes and implementing “NIST curves”, P-256, P-384 and [no other
curves]]

20

and specified cryptographic key sizes [equivalent to, or greater than, a symmetric
key strength of 112 bits].

5.2.1.4 FCS_CKM_EXT.1 Cryptographic Key Generation Services

FCS_CKM_EXT.1.1 The application shall [implement asymmetric key generation

].

5.2.1.5 FCS_CKM.2 Cryptographic Key Establishment

FCS_CKM.2.1 The application shall [implement functionality] to perform cryptographic key
establishment in accordance with a specified cryptographic key establishment
method:

• [Elliptic curve-based key establishment schemes] that meets the following:
[NIST Special Publication 800-56A, “Recommendation for Pair-Wise Key
Establishment Schemes Using Discrete Logarithm Cryptography”]; and

[

• Key establishment scheme using Diffie-Hellman group 14 that meets the
following: RFC 3526, Section 3].

5.2.1.6 FCS_CKM_EXT.2 Cryptographic Key Storage

FCS_CKM_EXT.2.1 The [TOE] shall store persistent secrets and private keys when not in use in
platform-provided key storage.

5.2.1.7 FCS_CKM_EXT.4 Cryptographic Key Destruction

FCS_CKM_EXT.4.1 The [TOE, TOE platform] shall zeroize all plaintext secret and private
cryptographic keys and CSPs when no longer required.

5.2.1.8 FCS_COP.1(1) Cryptographic Operation – Encryption/Decryption

FCS_COP.1.1(1) The application shall perform encryption/decryption in accordance with a
specified cryptographic algorithm

• AES-CBC (as defined in NIST SP 800-38A) mode

• AES-GCM (as defined in NIST SP 800-38D) mode

[

• No other AES modes

] and cryptographic key sizes [128-bit, 256-bit].

21

5.2.1.9 FCS_COP.1(2) Cryptographic Operation - Hashing

FCS_COP.1.1(2) The application shall perform cryptographic hashing services in accordance with
a specified cryptographic algorithm [

• SHA-1,

• SHA-256,

• SHA-384]

and message digest sizes [

• 160,

• 256,

• 384

] bits that meet the following: FIPS Pub 180-4.

5.2.1.10 FCS_COP.1(3) Cryptographic Operation - Signing

FCS_COP.1.1(3) The application shall perform cryptographic signature services (generation and
verification) in accordance with a specified cryptographic algorithm [

• RSA schemes using cryptographic key sizes of 2048-bit or greater that meet
the following: FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Section
4,

• ECDSA schemes using “NIST curves” P-256, P-384 and [no other curves] that
meet the following: FIPS PUB 186-4, “Digital Signature Standard (DSS)”,
Section 5

].

5.2.1.11 FCS_COP.1(4) Cryptographic Operation - Keyed-Hash Message Authentication

FCS_COP.1.1(4) The application shall perform keyed-hash message authentication in accordance
with a specified cryptographic algorithm

• HMAC-SHA-256

and [

• SHA-1

• SHA-384

] with key sizes [160, 256, 384 bits] and message digest sizes 256 and [160, 384] bits
that meet the following: FIPS Pub 198-1 The Keyed-Hash Message Authentication
Code and FIPS Pub 180-4 Secure Hash Standard.

22

5.2.1.12 FCS_IPSEC_EXT.1 IPsec

FCS_IPSEC_EXT.1.1 The TSF shall implement the IPsec architecture as specified in RFC 4301.

FCS_IPSEC_EXT.1.2 The TSF shall implement [tunnel mode].

FCS_IPSEC_EXT.1.3 The TSF shall have a nominal, final entry in the SPD that matches anything that is
otherwise unmatched, and discards it.

FCS_IPSEC_EXT.1.4 The TSF shall implement the IPsec protocol ESP as defined by RFC 4303 using the
cryptographic algorithms [AES-GCM-128, AES-GCM-256 as specified in RFC 4106,
[AES-CBC-128, AES-CBC-256 (both specified by RFC 3602) together with a Secure
Hash Algorithm (SHA)-based HMAC]].

FCS_IPSEC_EXT.1.5 The TSF shall implement the protocol: [

• IKEv1, using Main Mode for Phase I exchanges, as defined in RFCs 2407,
2408, 2409, RFC 4109, [no other RFCs for extended sequence numbers], [RFC
4868 for hash functions], and [support for XAUTH];

• IKEv2 as defined in RFCs 7296 (with mandatory support for NAT traversal as
specified in section 2.23), RFC 8784, RFC 8247, and [no other RFCs for hash
functions]].

FCS_IPSEC_EXT.1.6 The TSF shall ensure the encrypted payload in the [IKEv1, IKEv2] protocol uses
the cryptographic algorithms [AES-CBC-128, AES-CBC-256 as specified in RFC 6379
and [no other algorithm]].

FCS_IPSEC_EXT.1.7 The TSF shall ensure that [IKEv2 SA lifetimes can be configured by [VPN
Gateway] based on [length of time], IKEv1 SA lifetimes can be configured by
[VPN Gateway] based on [length of time]]. If length of time is used, it must
include at least one option that is 24 hours or less for Phase 1 SAs and 8 hours or
less for Phase 2 SAs.

FCS_IPSEC_EXT.1.8 The TSF shall ensure that all IKE protocols implement DH groups [19 (256-bit
Random ECP), 20 (384-bit Random ECP), and [14 (2048-bit MODP)]].

FCS_IPSEC_EXT.1.9 The TSF shall generate the secret value x used in the IKE Diffie-Hellman key
exchange (“x” in gx mod p) using the random bit generator specified in
FCS_RBG_EXT.1, and having a length of at least [224, 256, 384] bits.

FCS_IPSEC_EXT.1.10 The TSF shall generate nonces used in IKE exchanges in a manner such that the
probability that a specific nonce value will be repeated during the life a specific
IPsec SA is less than 1 in 2^[112, 128, 192].

Application Note: The probability that a specific nonce value will be repeated during the life of a
specific IPsec SA is less than 1 in 2^112 for DH Group 14, 2^128 for DH Group 19,
or 2^192 for DH Group 20.

23

FCS_IPSEC_EXT.1.11 The TSF shall ensure that all IKE protocols perform peer authentication using a
[RSA, ECDSA] that use X.509v3 certificates that conform to RFC 4945 and [Pre-
shared Keys].

FCS_IPSEC_EXT.1.12 The TSF shall not establish an SA if the [[Distinguished Name (DN)] and [no other
reference identifier type]] contained in a certificate does not match the expected
value(s) for the entity attempting to establish a connection.

FCS_IPSEC_EXT.1.13 The TSF shall not establish an SA if the presented identifier does not match the
configured reference identifier of the peer.

FCS_IPSEC_EXT.1.14 The [VPN Gateway] shall be able to ensure by default that the strength of the
symmetric algorithm (in terms of the number of bits in the key) negotiated to
protect the [IKEv1 Phase 1, IKEv2 IKE_SA] connection is greater than or equal to
the strength of the symmetric algorithm (in terms of the number of bits in the
key) negotiated to protect the [IKEv1 Phase 2, IKEv2 CHILD_SA] connection.

5.2.1.13 FCS_RBG_EXT.1 Random Bit Generation Services

FCS_RBG_EXT.1.1 The application shall [

• implement DRBG functionality

] for its cryptographic operations.

5.2.1.14 FCS_RBG_EXT.2 Random Bit Generation from Application

FCS_RBG_EXT.2.1 The application shall perform all deterministic random bit generation (DRBG)
services in accordance with NIST Special Publication 800-90A using [CTR_DRBG
(AES)].

FCS_RBG_EXT.2.2 The deterministic RBG shall be seeded by an entropy source that accumulates
entropy from a platform-based DRBG and [

• a software-based noise source

] with a minimum of [

• 256 bits

] of entropy at least equal to the greatest security strength (according to NIST SP
800-57) of the keys and hashes that it will generate.

5.2.1.15 FCS_STO_EXT.1 Storage of Credentials

FCS_STO_EXT.1.1 The application shall [

• invoke the functionality provided by the platform to securely store
[RSA/ECDSA Certificates (IKEv1 and IKEv2)],

• implement functionality to securely store [Pre-shared keys (IKEv1)]
according to [FCS_COP.1(1)]

24

] to non-volatile memory.

5.2.2 User Data Protection (FDP)

5.2.2.1 FDP_DAR_EXT.1 Encryption of Sensitive Application Data

FDP_DAR_EXT.1.13 The application shall [

• protect sensitive data in accordance with FCS_STO_EXT.1

] in non-volatile memory.

5.2.2.2 FDP_DEC_EXT.1 Access to Platform Resources

FDP_DEC_EXT.1.1 The application shall restrict its access to [

network connectivity

].

FDP_DEC_EXT.1.2 The application shall restrict its access to [

• no sensitive information repositories

].

5.2.2.3 FDP_NET_EXT.1 Network Communications

FDP_NET_EXT.1.1 The application shall restrict network communication to [

• user-initiated communication for [connection to the VPN Gateway],

• [always on functionality for application-initiated network communication,

].

5.2.2.4 FDP_RIP.2 Full Residual Information Protection

FDP_RIP.2.1 The [TOE] shall enforce that any previous information content of a resource is
made unavailable upon the [allocation of the resource to] all objects.

5.2.3 Identification and Authentication (FIA)

5.2.3.1 FIA_PSK_EXT.1 Pre-Shared Key Composition

FIA_PSK_EXT.1.1 The TSF shall be able to use pre-shared keys for IPsec.

FIA_PSK_EXT.1.2 The TSF shall be able to accept text-based pre-shared keys that:

3 Modified per TD0582

25

• are 22 characters and [[from 6 to 160 characters]];

• composed of any combination of [upper and lower case letters, numbers, and
special characters (that include: “!”, “@”, “#”, “$”, “%”, “^”, “&”, “*”, “(“, “)”,
and [no other special characters])].

FIA_PSK_EXT.1.3 The TSF shall condition the text-based pre-shared keys by using [[conversion of
ASCII to binary]], [and be able to [accept] bit-based pre-shared keys].

5.2.3.2 FIA_X509_EXT.1 X.509 Certificate Validation

FIA_X509_EXT.1.14 The application shall [implement functionality] to validate certificates in
accordance with the following rules:

• RFC 5280 certificate validation and certificate path validation.

• The certificate path must terminate with a trusted CA certificate.

• The application shall validate a certificate path by ensuring the presence of
the basicConstraints extension, that the CA flag is set to TRUE for all CA
certificates, and that any path constraints are met.

• The application shall validate that any CA certificate includes caSigning
purpose in the key usage field

• The application shall validate the revocation status of the certificate using
[OCSP as specified in RFC 6960]

• The application shall validate the extendedKeyUsage (EKU) field according to
the following rules:

o Certificates used for trusted updates and executable code integrity
verification shall have the Code Signing Purpose (id-kp 3 with OID
1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.

o Server certificates presented for TLS shall have the Server Authentication
purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the EKU field.

o Client certificates presented for TLS shall have the Client Authentication
purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2) in the EKU field.

o S/MIME certificates presented for email encryption and signature shall
have the Email Protection purpose (id-kp 4 with OID 1.3.6.1.5.5.7.3.4) in
the EKU field.

o OCSP certificates presented for OCSP responses shall have the OCSP
Signing purpose (id-kp 9 with OID 1.3.6.1.5.5.7.3.9) in the EKU field.

4 Modified per TD0601

26

o Server certificates presented for EST shall have the CMC Registration
Authority (RA) purpose (id-kp-cmcRA with OID 1.3.6.1.5.5.7.3.28) in the
EKU field.

FIA_X509_EXT.1.2 The application shall treat a certificate as a CA certificate only if the
basicConstraints extension is present and the CA flag is set to TRUE.

5.2.3.3 FIA_X509_EXT.2 X.509 Certificate Authentication

FIA_X509_EXT.2.15 The application shall use X.509v3 certificates as defined by RFC 5280 to support
authentication for [IPsec].

FIA_X509_EXT.2.2 When the application cannot establish a connection to determine the validity of
a certificate, the application shall [not accept the certificate].

5.2.4 Security Management (FMT)

5.2.4.1 FMT_CFG_EXT.1 Secure by Default Configuration

FMT_CFG_EXT.1.1 The application shall provide only enough functionality to set new credentials
when configured with default credentials or no credentials.

FMT_CFG_EXT.1.2 The application shall be configured by default with file permissions which protect
the application binaries and data files from modification by normal unprivileged
users.

5.2.4.2 FMT_MEC_EXT.1 Supported Configuration Mechanism

FMT_MEC_EXT.1.16 The application shall [

• invoke the mechanisms recommended by the platform vendor for storing
and setting configuration options].

5.2.4.3 FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions [

• [management functions defined in FMT_SMF.1/VPN]].

5.2.4.4 FMT_SMF.1/VPN Specification of Management Functions (VPN)

FMT_SMF.1.1/VPN The TSF shall be capable of performing the following management functions:

[

• Specify VPN gateways to use for connections,

5 Modified per TD0601

6 Modified per TD0437

27

• Specify client credentials to be used for connections

].

5.2.5 Privacy (FPR)

5.2.5.1 FPR_ANO_EXT.1 User Consent for Transmission of Personally Identifiable
Information

FPR_ANO_EXT.1.1 The application shall [

• not transmit PII over a network

].

5.2.6 Protection of the TSF (FPT)

5.2.6.1 FPT_AEX_EXT.1 Anti-Exploitation Capabilities

FPT_AEX_EXT.1.1 The application shall not request to map memory at an explicit address except for
[no exceptions].

FPT_AEX_EXT.1.2 The application shall [

• not allocate any memory region with both write and execute permissions

].

FPT_AEX_EXT.1.3 The application shall be compatible with security features provided by the
platform vendor.

FPT_AEX_EXT.1.4 The application shall not write user-modifiable files to directories that contain
executable files unless explicitly directed by the user to do so.

FPT_AEX_EXT.1.5 The application shall be built with stack-based buffer overflow protection
enabled.

5.2.6.2 FPT_API_EXT.1 Use of Supported Services and APIs

FPT_API_EXT.1.1 The application shall use only documented platform APIs.

5.2.6.3 FPT_IDV_EXT.1 Software Identification and Versions

FPT_IDV_EXT.1.1 The application shall be versioned with [[Aruba internal versioning scheme]].

5.2.6.4 FPT_LIB_EXT.1 Use of Third Party Libraries

FPT_LIB_EXT.1.1 The application shall be packaged with only [

• Windows: openssl

• Android: openssl

28

• Linux: openssl, curl

].

5.2.6.5 FPT_TST_EXT.1/VPN(1) TSF Self-Test (VPN Client) (Windows and Linux)

FPT_TST_EXT.1.1/VPN(1) The [TOE] shall run a suite of self-tests during initial start-up (on power
on) to demonstrate the correct operation of the TSF.

FPT_TST_EXT.1.2/VPN(1) The [TOE] shall provide the capability to verify the integrity of stored TSF
executable code when it is loaded for execution through the use of the [TOE
cryptographic known-answer tests].

5.2.6.6 FPT_TST_EXT.1/VPN(2) TSF Self-Test (VPN Client) (Android)

FPT_TST_EXT.1.1/VPN(2) The [TOE] shall run a suite of self-tests during initial start-up (on power
on) to demonstrate the correct operation of the TSF.

FPT_TST_EXT.1.2/VPN(2) The [TOE platform] shall provide the capability to verify the integrity of
stored TSF executable code when it is loaded for execution through the use of the
[TOE cryptographic known-answer tests].

5.2.6.7 FPT_TUD_EXT.1(1) Trusted Update (Android)

FPT_TUD_EXT.1.1(1) The application shall [leverage the platform] to check for updates and patches to
the application software.

FPT_TUD_EXT.1.2(1) The application shall [provide the ability] to query the current version of the
application software.

FPT_TUD_EXT.1.3(1) The application shall not download, modify, replace or update its own binary
code.

FPT_TUD_EXT.1.4(1)7 Application updates shall be digitally signed such that the application platform
can cryptographically verify them prior to installation.

FPT_TUD_EXT.1.5(1) The application is distributed [as an additional software package to the platform
OS].

5.2.6.8 FPT_TUD_EXT.1(2) Trusted Update (Windows and Linux)

FPT_TUD_EXT.1.1(2) The application shall [provide the ability] to check for updates and patches to the
application software.

FPT_TUD_EXT.1.2(2) The application shall [provide the ability] to query the current version of the
application software.

7 Modified per TD0561

29

FPT_TUD_EXT.1.3(2) The application shall not download, modify, replace or update its own binary
code.

FPT_TUD_EXT.1.4(2)8 Application updates shall be digitally signed such that the application platform
can cryptographically verify them prior to installation.

FPT_TUD_EXT.1.5(2) The application is distributed [as an additional software package to the platform
OS].

5.2.6.9 FPT_TUD_EXT.2 Integrity for Installation and Update

FPT_TUD_EXT.2.1 The application shall be distributed using the format of the platform-supported
package manager.

FPT_TUD_EXT.2.2 The application shall be packaged such that its removal results in the deletion of
all traces of the application, with the exception of configuration settings, output
files, and audit/log events.

FPT_TUD_EXT.2.39 The application installation package shall be digitally signed such that its platform
can cryptographically verify them prior to installation.

5.2.7 Trusted Path/Channels (FTP)

5.2.7.1 FTP_DIT_EXT.1 Protection of Data in Transit

FTP_DIT_EXT.1.110 The application shall encrypt all transmitted [sensitive data] with IPsec and [no other
protocols] between itself and another trusted IT product.

5.3 TOE Security Assurance Requirements

The security assurance requirements for the TOE are included by reference according to TD0600:
Conformance claim sections updated to allow for MOD_VPNC_V2.3. These SARs are consistent with
those specified in PP-Configuration for Application Software and Virtual Private Network (VPN) Clients,
Version 1.0, 2021-08-13.

Table 5: Assurance Components

Requirement Class Requirement Component

ADV: Development ADV_FSP.1 Basic functional specification

AGD: Guidance documents

AGD_OPE.1: Operational user guidance

AGD_PRE.1: Preparative procedures

8 Modified per TD0561

9 Modified per TD0561

10 Modified per TD0601, TD0622

30

ALC: Life-cycle support

ALC_CMC.1 Labelling of the TOE

ALC_CMS.1 TOE CM coverage

ALC_TSU_EXT.1 Timely Security Updates

ATE: Tests ATE_IND.1 Independent testing - conformance

AVA: Vulnerability assessment AVA_VAN.1 Vulnerability survey

These assurance requirements imply the following requirements from CC class ASE: Security Target
Evaluation.

• ASE_CCL.1 Conformance claims

• ASE_ECD.1 Extended components definition

• ASE_INT.1 ST introduction

• ASE_OBJ.2 Security objectives

• ASE_REQ.2 Derived security requirements

• ASE_TSS.1 TOE summary specification

Consequently, the evaluation activities specified in PP-Configuration for Application Software and Virtual
Private Network (VPN) Clients, Version 1.0, 2021-08-13 apply to the TOE evaluation.

31

6 TOE Summary Specification

This chapter describes the following security functions:

• Cryptographic support

• User data protection

• Identification and authentication

• Security management

• Privacy

• Protection of the TSF

• Trusted path/channel

6.1 Cryptographic Support

The list below identifies the operating systems that have successfully completed Common Criteria
evaluations. The TSF relies on the OS platforms listed below for AES encryption of credential data as well
as full-stack implementation of HTTPS for initial connectivity to the VPN gateway to acquire configuration
settings for IPsec.

• Windows:

o Microsoft Windows 10 and Server version 1903 (May 2019 Update) (https://www.niap-
ccevs.org/Product/CompliantCC.cfm?CCID=2019.1244)

o Windows 10 and Windows Server 2019 version 1809 (https://www.niap-
ccevs.org/Product/CompliantCC.cfm?CCID=2019.1204)

o Windows 10 and Windows Server (April 2018 Update) (https://www.niap-
ccevs.org/Product/CompliantCC.cfm?CCID=2019.1018)

• Android:

o Samsung Galaxy Devices on Android 11 – Fall (CCEVS-VR-VID11211-2021)

• Linux:

o Ubuntu 18.04 – (https://www.commoncriteriaportal.org/files/epfiles/ST%20-
%20Canonical%20Ubuntu%20Server%2018.04%20LTS.pdf)

https://www.niap-ccevs.org/Product/CompliantCC.cfm?CCID=2019.1244
https://www.niap-ccevs.org/Product/CompliantCC.cfm?CCID=2019.1244
https://www.niap-ccevs.org/Product/CompliantCC.cfm?CCID=2019.1204
https://www.niap-ccevs.org/Product/CompliantCC.cfm?CCID=2019.1204
https://www.niap-ccevs.org/Product/CompliantCC.cfm?CCID=2019.1018
https://www.niap-ccevs.org/Product/CompliantCC.cfm?CCID=2019.1018
https://www.commoncriteriaportal.org/files/epfiles/ST%20-%20Canonical%20Ubuntu%20Server%2018.04%20LTS.pdf
https://www.commoncriteriaportal.org/files/epfiles/ST%20-%20Canonical%20Ubuntu%20Server%2018.04%20LTS.pdf

32

Table 6: Cryptographic Functions

Requirements Functions Certificate

 Windows Android Linux

Cryptographic Asymmetric Key Generation

FCS_CKM.1(1)

ECC schemes using “NIST curves” P-
256, P-384 that meet the following:
FIPS PUB 186-4, “Digital Signature
Standard (DSS)”, Appendix B.4

A2147 A2147 A2147

FFC schemes] using Diffie-Hellman
group 14 that meet the following: RFC
3526, Section 3

A2147 A2147 A2147

Cryptographic Key Generation (IKE)

FCS_CKM.1.1/VPN FIPS PUB 186-4, “Digital Signature
Standard (DSS)”, Appendix B.3 for RSA
schemes;

A2147 A2147 A2147

FIPS PUB 186-4, “Digital Signature
Standard (DSS)”, Appendix B.4 for
ECDSA schemes and implementing
“NIST curves”, P-256 and P-384

A2147 A2147 A2147

Cryptographic Key Establishment

FCS_CKM.2.1 Elliptic curve-based key establishment
schemes] that meets the following:
NIST Special Publication 800-56A,
“Recommendation for Pair-Wise Key
Establishment Schemes Using Discrete
Logarithm Cryptography”

A2147 A2147 A2147

Key establishment scheme using Diffie-
Hellman group 14 that meets the
following: RFC 3526, Section 3

A2147 A2147 A2147

Cryptographic Operation – Encryption/Decryption

FCS_COP.1.1(1) AES-CBC (128-bit, 256-bit) as defined in
NIST SP 800-38A

AES-GCM (128-bit, 256-bit) as defined
in NIST SP 800-38D

A2147 A2147 A2147

Cryptographic Operation - Hashing

FCS_COP.1.1(2) SHA-1, SHA-256, and SHA-384 as FIPS
Pub 180-4

A2147 A2147 A2147

Cryptographic Operation - Signing

FCS_COP.1.1(3) RSA schemes using cryptographic key
sizes of 2048-bit or greater that meet
the following: FIPS PUB 186-4, “Digital
Signature Standard (DSS)”, Section 4

A2147 A2147 A2147

33

Requirements Functions Certificate

 Windows Android Linux

ECDSA schemes using “NIST curves” P-
256, P-384 that meet FIPS PUB 186-4,
“Digital Signature Standard (DSS)”,
Section 5

A2147 A2147 A2147

Cryptographic Operation - Keyed-Hash Message Authentication

FCS_COP.1.1(4) HMAC-SHA-1

HMAC-SHA-256

HMAC-SHA-384

That meets the following: FIPS Pub
198-1 and FIPS Pub 180-4

A2147 A2147 A2147

Random Bit Generation Services

Random Bit Generation from Application

FCS_RBG_EXT.1

FCS_RBG_EXT.2

256-bits

NIST Special Publication 800-90A using
CTR_DRBG (AES)

A2147 A2147 A2147

6.1.1 FCS_CKM.1(1): Cryptographic Asymmetric Key Generation

The TOE generates asymmetric keys using the following key generation algorithms:

• Elliptic-curve cryptography (ECC) using NIST curves P-256 (256-bits) and P-384 (384-bits) key pairs
for key establishment that meet FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Appendix B.4
for IPsec (DH groups 19 and 20, respectively).

• Finite Field Cryptography (FFC) using Diffie-Hellman group 14 (2048-bits) that meets RFC 3526,
Section 3 for IPsec.

The TOE invokes cryptographic key generation using the Aruba Common Cryptographic Module (ACCM).

6.1.2 FCS_CKM.1(2): Cryptographic Symmetric Key Generation

The TOE generates symmetric cryptographic keys using a Random Bit Generator as specified in
FCS_RBG_EXT.1 with 128 bit and 256 bit cryptographic key sizes.

The TOE includes an AES-256 CTR_DRBG (irrespective of the underlying Platform) that seeds itself with
384-bits of entropy (composed of a 256-bit entropy input and a 128-bit nonce) drawn from a Platform
function intended to provide cryptographically secure randomness (and conditioned using SHA-1). The
following list describes the mechanism by which VIA obtains its seeding.

• Android- /dev/random

• Windows - BCryptGenRandom()

34

• Linux - getrandom() and that it uses a flag of GRND_RANDOM and behaves exactly as
/dev/random.

Based on NIAP’s “Clarification to the Entropy Documentation and Assessment Annex”, Aruba assumes a
minimum entropy of 0.67 bits of entropy per bit of data from platform provided sources. This minimum-
entropy estimate along with knowledge that the seed is 384-bits means that the TOE seeds itself with at
least 256-bits of entropy.

6.1.3 FCS_CKM.1/VPN: Cryptographic Key Generation (IKE)

The TOE supports RSA (2048 bits) and ECDSA (for curves P-256 and P-384) key pairs for use with IKE peer
authentication.

The TOE fulfills all of the FIPS PUB 186-4 requirements for cryptographic key generation without
extensions. The TOE conforms to all shall, shall-not, should and should-not statements. For RSA key
establishment, the TOE implements section B.3.6 in Appendix B.3 of FIPS PUB 186-4. For ECDSA, the TOE
implements section B.4.2 in Appendix B of FIPS PUB 186-4.

6.1.4 FCS_CKM.2: Cryptographic Key Establishment

The TOE implements the following key establishment schemes for IPsec:

• Elliptic curve-based key establishment schemes that meets NIST Special Publication 800-56A,
“Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography” for Diffie-Hellman groups 19 and 20.

• Key establishment scheme using Diffie-Hellman group 14 that meets RFC 3526, Section 3.

6.1.5 FCS_CKM_EXT.1: Cryptographic Key Generation Services

The TOE implements asymmetric key generation. The cryptographic functions (including key generation)
are implemented by the Aruba Common Cryptographic Module. Table 7 Key Purpose/Key Storage/Key
Destruction describes the keys and secrets used by the TOE.

6.1.6 FCS_CKM_EXT.2: Cryptographic Key Storage

Table 7 identifies the purpose of each key used by the TOE, the key storage location, and the key
destruction method when the key is no longer required.

Table 7 Key Purpose/Key Storage/Key Destruction

Key Name: Origin/Purpose: Storage Location: Key Destruction:

DH Private
Components

Used to derive the
secret session key
during DH key
agreement protocol
Group 14 (384 bits)

Temporarily in
volatile RAM

An application program
which uses the API may
destroy the key. The
TOE zeroizes (zero
overwrite) this CSP.

DRNG Seed Key DRBGs
for key generation

Temporarily in
volatile RAM

An application program
which uses the API may
destroy the key. The

35

Key Name: Origin/Purpose: Storage Location: Key Destruction:

DRBG Seed: SP800-90a
DRBG (384 bits)

DRBG Key: SP800-90a
(256 bits)

TOE zeroizes (zero
overwrite) this CSP.

RSA Private Key Used to create RSA
digital signatures
key size: 2048 bits

Temporarily in
volatile RAM (while in
use), persistently in
platform key storage
(while not in use)

An application program
which uses the API may
destroy the key. The
TOE zeroizes (zero
overwrite) this CSP
when residing in
memory; when
persistently stored in
platform key storage, it
is destroyed by the
platform. The TOE has
no mechanism to
initiate the destruction
of persistently stored
certificates.

ECDSA Private
Key

Used to create DSA
digital signatures
NIST curves: P-256, P-
384

Temporarily in
volatile RAM (while in
use), persistently in
platform key storage
(while not in use)

An application program
which uses the API may
destroy the key. The
TOE zeroizes (zero
overwrite) this CSP
when residing in
memory; when
persistently stored in
platform key storage, it
is destroyed by the
platform. The TOE has
no mechanism to
initiate the destruction
of persistently stored
certificates.

AES Keys Used during AES
encryption, decryption,
and CMAC operations

Key sizes: 128 bits, 192
bits, 256 bits

Temporarily in
volatile RAM

An application program
which uses the API may
destroy the key. The
TOE zeroizes (zero
overwrite) this CSP.

HMAC Keys Used during
HMAC-SHA- 1,
HMAC-SHA-256, HMAC-
384 operations

Key sizes: 160 bits, 256
bits, 384 bits

Temporarily in
volatile RAM

An application program
which uses the API may
destroy the key. The
TOE zeroizes (zero
overwrite) this CSP.

36

Key Name: Origin/Purpose: Storage Location: Key Destruction:

DH Public
Component

Used to derive the
secret session key
during DH key
agreement protocol
DH Groups:
Group 14 (2048 bits)

Temporarily in
volatile RAM

No longer needed by
trusted channel

ECDH Public
Component

Used to derive the
secret session key
during ECDH key
agreement protocol
Group 19 (P-256), Group
20 (P-384)

Temporarily in
volatile RAM

N/A

RSA Public
Keys

Used to verify RSA
Signatures
key size: 2048 bits

Temporarily in
volatile RAM

N/A

ECDSA Public
Keys

Used to verify ECDSA
Signatures
NIST Curves:
P-256, P-384

Temporarily in
volatile RAM

N/A

Pre-shared Key Used for IKEv1 phase 1
authentication

Text Based 1 - 256
characters

Stored encrypted per
FCS_STO_EXT.1 and
stored using platform
functionality (registry,
keystore, app
preference data)

After use, decrypted
buffer is zeroed with
platform mechanism
SecureZeroMemory()
(Windows) or memset
with values of 0x00
(Linux, Android)

Table 7 lists all the keys manipulated by the TOE. The TOE does not store these keys unencrypted into
persistent storage. While the TOE manipulates keys, on all platforms, the TOE platform’s key storage is
used. The key storage repositories for each platform are as follows:

• Android: Android Keystore

• Windows: Windows Certificate Store

• Linux: Linux keyrings

6.1.7 FCS_CKM_EXT.4: Cryptographic Key Destruction

The TOE and its platform collectively zeroize all plaintext secret and private cryptographic keys and CSPs
when no longer required. The cryptographic keys are destroyed when they are no longer in use by the
system. Table 7 above details how each key is destroyed. The details apply to all platforms.

6.1.8 FCS_COP.1(1): Cryptographic Operation – Encryption/Decryption

The TOE stores pre-shared keys using 128-bit AES-CBC according to FCS_COP.1 on all of the platforms.

37

The TOE implements the IPsec protocol ESP as defined by RFC 4303 using the cryptographic algorithms
AES-GCM-128, AES-GCM-256 as specified in RFC 4106, and AES-CBC-128, AES-CBC-256 both specified by
RFC 3602.

6.1.9 FCS_COP.1(2): Cryptographic Operation - Hashing

The TOE uses the hash function with other application cryptographic functions. Specifically, SHA-1 is used
as the hash algorithm for the HMAC-SHA-1 message authentication function for ESP. Similarly, each of
SHA-1, SHA-256, and SHA-384 are used as hash algorithms for the corresponding HMAC algorithms used
as message authentication for IKE.

Additionally, TOE software updates are verified using a 2048-bit RSA digital signature with SHA-1.

6.1.10 FCS_COP.1(3): Cryptographic Operation - Signing

The TOE performs cryptographic signature services (generation and verification) in accordance with the
following cryptographic algorithms:

• RSA schemes using cryptographic key sizes of 2048-bits that meets FIPS PUB 186-4, “Digital
Signature Standard (DSS)”, Section 4 is used for IPsec authentication and TOE update verification.

• ECDSA schemes using “NIST curves” P-256 and P-384 that meet FIPS PUB 186-4, “Digital Signature
Standard (DSS)”, Section 5 is used for IPsec authentication.

6.1.11 FCS_COP.1(4): Cryptographic Operation - Keyed-Hash Message Authentication

The TOE provides the HMAC-SHA-1, HMAC-SHA-256 and HMAC-SHA-384 algorithms. Refer to Table 6:
Cryptographic Functions for the corresponding CAVP certificate demonstrating compliance with these
algorithms. These keyed-hash functions can be defined for use in an IPsec connection. The HMAC-SHA-1,
HMAC-SHA-256 and HMAC-SHA-384 algorithms are used with key sizes and block sizes of 160, 256 and
384-bits respectively, producing output MAC lengths equal to the block size.

HMAC-SHA-1 is used as authentication for ESP. HMAC-SHA-1, HMAC-SHA-256, and HMAC-SHA-384 are
used as authentication for IKE.

6.1.12 FCS_IPSEC_EXT.1: IPsec

The TOE implements its own cryptography via the Aruba Common Crypto Module (ACCM). The
cryptographic functionality is implemented by the application itself as a separate executable that is
bundled with the platform. The TOE interacts with the network stack of the platforms using sockets
through the respective platform APIs.

The TOE implements the IPsec protocol as specified in RFC 4301; however, the TOE relies upon the VPN
Gateway to ensure that the cryptographic algorithms and key sizes negotiated during the IKEv1 and IKEv2

38

negotiation ensure that the security strength of the IKE_SA is greater than or equal to that of the
CHILD_SA11.

The IKEv1 and IKEv2 SA lifetimes are configured by the VPN Gateway based upon the length of time.
Length of time includes 24 hours or less for Phase 1 and 8 hours or less for Phase 2.

The TOE implements IKEv1, in tunnel mode only and main mode as defined in RFCs 2407, 2408, 2409, RFC
4109. Aggressive mode is not supported for IKEv1 Phase 1 exchanges. The IKEv1 supports hash functions
defined in RFC 4868 and supports XAUTH. Extended sequence numbers is not supported. The TOE
performs peer authentication using pre-shared keys or certificates.

Pre-shared keys for the TOE are configured on the Aruba Mobility Controller. The TOE supports the use of
pre-shared keys (the TOE allows 1 to 256 character PSKs) for IPsec VPNs. The specific length of 22
characters required by the [MOD_VPNC_V2.3] is supported by the TOE. Pre-shared keys can include any
letter from a-z, A-Z, the numbers 0 – 9, and the special characters “!”, “@”, “#”, “$”, “%”, “^”, “&”, “*”,
“(“, and “)”.

The TOE conditions the text-based pre-shared keys by converting the ASCII to binary. The TOE is able to
accept bit-based pre-shared keys. The pre-shared key shall be loaded onto the VIA Client via the
connection profile.

Pre-shared keys apply to IKEv1 only. Character limits and character set are not enforced programmatically;
therefore, the administrative guidance includes instructions on setting strong pre-shared keys.

The TOE implements IKEv2, in tunnel mode only. The TOE does not offer transport mode as a configuration
option. IKEv2 is implemented as defined in RFCs 7296 (with mandatory support for NAT traversal as
specified in section 2.23), RFC 8784, RFC 8247.

The TOE implements peer authentication using RSA certificates or ECDSA certificates that conform to RFC
4945. If certificates are used, the TOE ensures that the distinguished name (DN) contained in a certificate
matches the expected DN for the entity attempting to establish a connection and ensures that the
certificate has not been revoked (using the Online Certificate Status Protocol [OCSP] in accordance with
RFC 6960).

During the Peer Authentication stage of IPsec, the TOE will verify the authenticity of the VPN gateway’s
X.509v3 certificate by validating the certificate, the certificate path, the certificates revocation status
using OCSP, the certificate path terminates in a trusted CA certificate, and that the CA certificate has the
basicConstraints extension present and the CA flag set to true.

The SHA hash algorithm (all claimed key sizes) is used as part of HMAC, but is also used independently as
part of digital signature creation and verification. The TOE generates RSA and ECDSA signatures during
IKEv2 peer authentication. The TOE verifies RSA & ECDSA signatures during IKEv2 peer authentication and
trusted updates.

11 Note that the algorithm negotiated will be AES because that is the only available algorithm, so

strength is based solely upon key size where more bits are stronger.

39

The TOE implements various HMAC algorithms to be used for authentication with ESP. The specific
algorithms used depend upon the ciphersuite being used. The TOE implements AES-GCM-128, AES-GCM-
256, AES-CBC-128, and AES-CBC-256 as ESP encryption algorithms and implements HMAC-SHA1 as the
authentication algorithm. The TOE implements AES-CBC-128 and AES-CBC-256 as encryption algorithms
and implements HMAC-SHA1, HMAC-SHA-256 and HMAC-SHA-384 as the authentication algorithm.

As configured on the VPN Gateway, the TOE supports the following Diffie-Hellman (DH) groups for use in
SA negotiation:

• 14 (2048-bit MODP),

• 19 (256-bit Random ECP), and

• 20 (384-bit Random ECP).

Only one DH group can be configured for a specific policy so there is no negotiation. Different policies can
have different groups. Implementation is the same for both versions of IKE.

The TOE generates the secret value x used in the Diffie-Hellman key exchange ('x' in gx mod p) using the
CAVP tested RBG specified in FCS_RBG_EXT.1 and having possible lengths of 224 for group 14, 256 for
group 19, or 384 bits for group 20. When a random number is needed for a nonce, the probability that a
specific nonce value will be repeated during the life of a specific IPsec SA is less than 1 in 2112, 2128, or 2192.

The TOE implements minimal SPD rules that are defined implicitly through the configuration and
connection of a VPN session. The TOE does not support direct editing of SPD rules. As part of initial
configuration the administrator must manually configure the SPD such that if no “rules” are found to
match, a final rule exists that causes the network packet to be discarded. The PROTECT and BYPASS rules
are implicit and are implemented by configuring a split tunnel. The administrator may configure PROTECT
and BYPASS rules by enabling or disabling split-tunnel mode in the VIA connection profile on the VPN
Gateway.

All traffic originating from the client operating system is passed through the tunnel established by the VIA
client to the VPN Gateway. When split-tunneling is enabled, the VPN Gateway pushes routes configured
with the tunnel address command in the VIA connection profile on the VPN Gateway to the VIA client.
Traffic matching the routes is forwarded through the IPsec tunnel. The DISCARD rule is not supported by
the TOE and must be provided by firewall rules configured on the VPN Gateway and the Platform.

6.1.13 FCS_RBG_EXT.1: Random Bit Generation, FCS_RBG_EXT.2: Random Bit Generation
from Application

The application implements the DRBG functionality. Therefore FCS_RBG_EXT.2 is included in the security
target. The TOE implements SP 800-90A using CTR_DRBG (AES) for all deterministic random bit
generation services.

The TOE includes an AES-256 CTR_DRBG (irrespective of the underlying Platform) that seeds itself with
384 bits of entropy (composed of a 256 bit entropy input and a 128 bit nonce) drawn from a platform
function intended to provide cryptographically secure randomness (and conditioned using SHA-1). The
following list describes the mechanism by which VIA obtains its seeding.

40

• Android - /dev/random

• Windows - BCryptGenRandom()

• Linux - getrandom() and that it uses a flag of GRND_RANDOM and behaves exactly as
/dev/random.

Based on NIAP’s “Clarification to the Entropy Documentation and Assessment Annex”, Aruba assumes a
minimum entropy of 0.67 bits of entropy per bit of data from platform provided sources. This minimum-
entropy estimate along with knowledge that the seed is 384 bits means that the TOE seeds itself with at
least 256 bits of entropy.

6.1.14 FCS_STO_EXT.1 Storage of Credentials

The TOE maintains two types of credentials: certificates and pre-shared keys (used for IKEv1). All platform
versions of the TOE protect pre-shared keys using AES. For certificates, platform storage mechanisms are
used. Specifically, the Windows version of the TOE uses the Windows Certificate Store while the Linux
version of the TOE uses the Linux keyring and the Android version of the TOE uses the Android keystore.

6.2 User Data Protection (FDP)

6.2.1 FDP_DAR_EXT.1: Encryption of Sensitive Application Data

The TOE does not store any sensitive data in non-volatile memory other than the credential data that is
protected by FCS_STO_EXT.1.

6.2.2 FDP_DEC_EXT.1: Access to Platform Resources

Sensitive information repositories are defined as those collections of sensitive data that could be expected
to be shared among some applications, users, or user roles, but to which not all of these would ordinarily
require access.

The TOE restricts its access to using network connectivity when it is needed to communicate to the VPN
Gateway.

6.2.3 FDP_NET_EXT.1: Network Communications

The TOE allows network communications to be initiated by the user in order to connect to the VPN
Gateway. The TOE can also provide always-on functionality for application-initiated network
communication. The Windows and Linux TOE platforms provide always-on functionality for application-
initiated network communication. However, this functionality must be enabled by an administrator. The
Android TOE platform provides always-on functionality available by default.

6.2.4 FDP_RIP.2; Full Residual Information Protection

The TOE ensures that no residual information exists in network packets. When the TOE allocates a new
buffer for either an incoming or outgoing a network packet, the new packet data will be used to overwrite
any previous data in the buffer. If an allocated buffer exceeds the size of the packet, additional space will
be overwritten (padded) with zeros before the packet is forwarded (to the external network or delivered
to the appropriate, internal application).

41

The clearing of residual information is processed the same on the Android, Windows, and Linux platforms.

6.3 Identification and Authentication

6.3.1 FIA_PSK_EXT.1: Pre-Shared Key Composition

The TOE supports the use of pre-shared keys (the TOE allows 6 to 160 character PSKs) for IPsec VPNs. The
specific length of 22 characters required by the [MOD_VPNC_V2.3] is supported by the TOE. Pre-shared
keys can include any letter from a-z, A-Z, the numbers 0 – 9, and the special characters “!”, “@”, “#”, “$”,
“%”, “^”, “&”, “*”, “(“, and “)”.

The TOE conditions the text-based pre-shared keys by converting the ASCII to binary. The TOE is able to
accept bit-based pre-shared keys.

6.3.2 FIA_X509_EXT.1: X.509 Certificate Validation

The TOE can use X.509 certificates for authentication. The TOE uses a user specified certificate when
attempting to establish the VPN connection. The Android, Linux, and Windows versions of the TOE
validate authentication certificates (including the full path) and checks their revocation status using OCSP.

The TOE processes a VPN connection to a server by first comparing the Identification (ID) Payload received
from the server against the certificate sent by the server, and if the DN of the certificate does not match
the ID, then the TOE does not establish the connection. Assuming the server’s certificate matches the ID,
the TOE then validates that it can construct a certificate path from the server’s certificate through any
intermediary CAs to the CA certificate specified by the user in the VPN configuration. If the TOE can
successfully build the certificate path, then the TOE will next check the validity of the certificates (e.g.,
checking its validity dates and that the CA flag is present in the basic constraints section for all CA certs).
Assuming the certificates are valid, the TOE finally checks the revocation status of all certificates (starting
with the server’s certificate and working up the chain). Configuration settings applied by the Aruba
Mobility Controller will determine if a certificate is accepted or rejected if the connection to the OCSP
server cannot be established; in the evaluated configuration, a configuration will be applied to the TOE
that rejects the certificate in these cases.

The TOE implements X.509 certificate validation functionality for the following:

• IPsec – Windows, Android, Linux.

6.3.3 FIA_X509_EXT.2: X.509 Certificate Authentication

A certificate is assigned to each VPN profile by an administrator. The VPN profile is downloaded from the
server to the client. The VPN Profile tab displays the following information about each downloaded VPN
profile:

• Profile: Name of the VPN profile, and the date and time that the profile was added.

• Authentication: IKE protocol version and authentication type.

• Server: IP address of the VPN server.

• Auth Profile: Web authentication profile.

42

• Certificate: VPN connection certificate (only for certificate-based authentication).

The TOE uses X.509v3 certificates for authentication as defined in RFC 5280 in IPsec exchanges and rejects
any certificates that cannot be validated as described above. The certificate will not be accepted when
the connection to OCSP server cannot be reached.

6.4 Security Management

6.4.1 FMT_CFG_EXT.1: Secure by Default Configuration

The TOE is not provided with any default credentials or pre-shared keys. All external configuration
comes from the Mobility Controller. The configuration options for the TOE consists of the URL of the
gateway, entering credentials, pre-shared key (if used) and the profile prior to establishing a connection.

The TOE requires the following permissions:

• Windows: no end user modification is permitted,

• Linux and Android: all require root permission.

6.4.2 FMT_MEC_EXT.1: Supported Configuration Mechanism12

The TOE configuration options come from Aruba Mobility Controller and deploy platform-specific options.
The configuration options are stored and set using the mechanisms supported by the following platforms.

• Windows: Registry (HKCU\SOFTWARE\ARUBANETWORKS), C:\ProgramData, and an XML file
in %USERPROFILE%.

• Android: /data/data/com.aruba.via/files/ - controller IP address and credential information is
stored using SharedPreferences.

• Linux: XML file on disk in user profile.

The configuration options for the TOE consists of entering the URL of the gateway, entering credentials,
pre-shared key (if used), and downloading profile prior to establishing a connection.

6.4.3 FMT_SMF.1: Specification of Management Functions

The TOE does not support any management functionality as described in the [PP_APP_v1.3]. The TOE
supports the management functionality as defined in [MOD_VPNC_V2.3].

6.4.4 FMT_SMF.1/VPN: Specification of Management Functions (VPN)

The following security management functions are provided by the TOE:

• Specify VPN gateways to use for connections,

• Specify client credentials to be used for connections,

12 Modified per TD0543 (Windows 10)

43

The first time a connection is established, a user opens the VIA client and enters the server name,

username, and password. If the VIA web authentication list has more than one VIA authentication

profile, the user can choose a VIA authentication profile from the available ones. After successful

authentication, the VIA client downloads the appropriate VIA connection profile and establishes the

IPsec connection if the user is connected to an untrusted network.

6.5 Privacy

6.5.1 FPR_ANO_EXT.1: User Consent for Transmission of Personally Identifiable
Information

The TOE does not transmit personally identifiable information over a network.

6.6 Protection of the TSF

6.6.1 FPT_AEX_EXT.1: Anti-Exploitation Capabilities

For each platform, the application does not allocate any memory region with both write and execute
permissions nor does the TOE request to map memory to an explicit address. The TOE does not write
user-modifiable files to directories that contain executable files. The application is built with stack-based
buffer overflow protection enabled. The details of each specific platform is identified below.

• The Windows VPN client application does not allocate any memory region with both write and
execute permissions nor does the TOE request to map memory to an explicit address. By
default, /DYNAMICBASE is enabled to support ASLR. The TOE does not write user-modifiable
files to directories that contain executable files. No files are downloaded to Program Files. The
application is built with stack-based buffer overflow protection enabled using the /GS flag for
Windows. The Windows VPN client application is compatible with security features provided by
the platform vendor.

• The Android VPN Client application does not allocate any memory region with both write and
execute permissions nor does the TOE request to map memory to an explicit address. The –
fpic flag is set to support ASLR. The TOE does not write user-modifiable files to directories that
contain executable files. No files are downloaded to /data/data/package. The application
is built with stack-based buffer overflow protection enabled using –fstack-protector-

strong. The Android VPN client application is compatible with security features provided by
the platform vendor.

• The Linux VPN Client application does not allocate any memory region with both write and
execute permissions nor does the TOE request to map memory to an explicit address. ASLR is
supported by default. By default, the TOE does not write user-modifiable files to directories that
contain executable files. The application is built with stack-based buffer overflow protection
enabled using -fpic. The Linux VPN client application is compatible with security features

with SELinux.

6.6.2 FPT_API_EXT.1: Use of Supported Services and APIs

The TOE includes the use only documented platform APIs. The Platform APIs are documented below.

44

• Windows: See Appendix A.

• Android: See Appendix B.

• Linux: See Appendix C.

6.6.3 FPT_IDV_EXT.1: Software Identification and Versions

Aruba provides a version control system for its software components. The TOE has a unique software
versioning that identifies major versions and their subsequent maintenance releases in the following form:
<major>.<minor>.<patch>.<build>. Major and minor releases introduce new major and minor features
for the product, and patch and build releases identify bug and security patches and the build number.

6.6.4 FPT_LIB_EXT.1: Use of Third Party Libraries

The TOE is packaged with the following third party libraries.

• Windows: openssl

• Android: openssl

• Linux: openssl, curl

6.6.5 FPT_TST_EXT.1/VPN(1): TSF Self-Test (VPN Client) (Windows and Linux) and
FPT_TST_EXT.1/VPN(2): TSF Self-Test (VPN Client) (Android)

The TOE performs known answer power on self-tests (POST) on its cryptographic algorithms to ensure
that they are functioning correctly. The TOE utilizes the Aruba Common Cryptographic Module (ACCM)
library which implements known answer tests on its cryptographic algorithms to ensure they are working
correctly. These known answer tests involve using the ACCM library functions to encrypt blocks of data
and comparing the resulting encrypted block of data to a block that is known to be correct. The result of
encrypting a block of data is the same every time if the encryption library operates properly. These tests
cover the following algorithms, known answer tests, and pairwise consistency tests:

• AES-GCM – 128 bits, 256 bits,

• AES-CBC – 128 bits, 256 bits,

• SHA 1, SHA 256, SHA 384,

• HMAC-SHA1, HMAC-SHA-256, HMAC-SHA-384,

• RSA Pairwise Consistency Test,

• RSA Encrypt/Decrypt Known Answer Test,

• DSA Pairwise Consistency Test,

• ECDSA Pairwise Consistency Test,

• ECDH Pairwise Consistency Test,

45

• DH Pairwise Consistency Test, and

• FIPS 186-4 RNG Known Answer Test.

The TOE invokes these self-tests of the ACCM library at start to ensure that those cryptographic algorithms
are working correctly.

A self-test is additionally performed on the cryptographic executable code. For Windows and Linux
platforms, the cryptographic module is signed by Aruba using 2048-bit RSA. For Android, the entire
application is signed by Google as part of its distribution on the Google Play store. This signature uses
4096-bit RSA.

If any self-test fails, the TOE will not start. Successful execution of self-testing is implicit through the
application starting without error. For troubleshooting purposes, a debug log can be enabled that writes
the outcome of the self-test to a local file that shows the results of the self-test. Since the success or
failure of the self-test is implicit in whether or not the application starts successfully, the debug log is only
used to confirm the reason behind any anomalous behavior for reporting to Aruba Support.

• Windows:
o Success: “FIPS Powerup Self Finished Successfully”
o Failure: “FIPS_powerupSelfTest() failed error <code>”

• Android:
o Success: “Finished Mocana initialization...”
o failure: “Mocana initialization error <code>”

• Linux:
o Success: “Power up self test passed...”
o Failure: “!!ERROR!! :Power up self test failed: <error code>”

The entire purpose of the TSF is to establish IPsec connectivity. Any tampering of the IPsec functionality,
either as a whole or through corruption of individual cryptographic algorithms, would be detected through
a failure of the software integrity test or of the individual cryptographic known-answer/pairwise
consistency tests. Therefore, the testing provided by the TOE (and its underlying platform in the case of
Android) is sufficient to ensure that the application cannot be modified without detection in a way that
would compromise the behavior of the TSF.

6.6.6 FPT_TUD_EXT.1(1) (Android): Trusted Update, FPT_TUD_EXT.1(2) (Windows and
Linux): Trusted Update FPT_TUD_EXT.2: Integrity for Installation and Update

The About tab on the TOE shows the current system image version number.

The TOE platforms support loading updates by the administrator. For Android version, the application and
signature are provided and verified by the Google Play Store. The Android version is signed through the
app store using RSA 2048 bit with SHA-1 digital signature. The TOE platform checks the signature against
the downloaded application when the update is obtained by the TOE platform.

For Windows and Linux platforms, the administrator obtains the update in the form of an installer through
the Aruba Mobility Controller or the Aruba Support Portal. Regardless of its origin, the update is verified
using an RSA 2048 digital signature with SHA-1, signed by Aruba. The installer automatically verifies the
digital signature on the update during the installation. An unverified update cannot be installed.

46

The authorized source for the Windows and Linux updates is via Aruba. The Google Play Store is the
authorized source for the Android update.

The TOE application package is delivered in the following platform-supported formats:

• Windows: .msi

• Android: .apk, playstore

• Linux: .deb, .rpm

The TOE does not download, modify, replace or update its own binary code. The application is packaged
such that its removal results in the deletion of all traces of the application, with the exception of
configuration settings and output files.

6.7 Trusted Path/Channels

6.7.1 FTP_DIT_EXT.1: Protection of Data in Transit

The application encrypts all transmitted sensitive data with IPsec between itself and another trusted IT
product. The purpose of the application is to enable a secure IPsec connection between its underlying
host OS platform and a remote system that is protected by a VPN gateway. Therefore, any data that
traverses the IPsec tunnel is network traffic generated by the underlying OS platform or other
applications running on it.

6.8 ALC_TSU_EXT.1: Timely Security Updates

Aruba has a Security Incident Response Team (SIRT) that security information can be provided to at
https://www.arubanetworks.com/support-services/sirt/. Findings can be submitted over email using a
PGP key or by opening a ticket on support site (HTTPS). Aruba does not disclose any identified vulnerability
until a patch is available. If vulnerability is disclosed on a side channel (e.g. a published CVE), high or critical
findings are addressed as a priority. High vulnerabilities are addressed within 30 days, moderate
vulnerabilities within 90 days, and low vulnerabilities within 180 days. Historically, all findings have been
addressed within 30 days regardless of severity.

https://www.arubanetworks.com/support-services/sirt/

47

7 Protection Profile Claims

This TOE is conformant to the following CC specifications:

• Protection Profile for Application Software, Version 1.3, 2019-03-01 [PP_APP_v1.3] with the

optional requirements: FCS_CKM.1(2), and the selection-based requirements: FCS_CKM.1(1),

FCS_CKM.2, FCS_COP.1(1), FCS_COP.1(2), FCS_COP.1(3), FCS_COP.1(4), FCS_RBG_EXT.2,

FIA_X509_EXT.1, FIA_X509_EXT.2, and FPT_TUD_EXT.2.

• PP-Module for Virtual Private Network (VPN) Clients, Version 2.3, 2021-08-10 [MOD_VPNC_V2.3]
with the selection-based requirement FIA_PSK_EXT.1.

• PP-Configuration for Application Software and Virtual Private Network (VPN) Clients, Version

1.0, 2021-08-13 as per TD0600.

As explained in Section 3, Security Problem Definition, the Security Problem Definition of the
[PP_APP_v1.3] and [MOD_VPNC_V2.3] have been copied verbatim into this ST.

As explained in Section 4, Security Objectives, the Security Objectives of this ST is conformant to
[PP_APP_v1.3] and [MOD_VPNC_V2.3] have been copied verbatim into this ST.

The following table identifies all the Security Functional Requirements (SFRs) in this ST. Each SFR is drawn
from the [PP_APP_v1.3] and the [MOD_VPNC_V2.3].

Table 8: SFR Protection Profile Sources

Requirement Class Requirement Component Source

FCS: Cryptographic Support FCS_CKM.1(1): Cryptographic Asymmetric Key Generation PP_APP_v1.3

FCS_CKM.1(2): Cryptographic Symmetric Key Generation PP_APP_v1.3

FCS_CKM.1/VPN: Cryptographic Key Generation (IKE) MOD_VPNC_V2.3

FCS_CKM_EXT.1: Cryptographic Key Generation Services PP_APP_v1.3

FCS_CKM.2: Cryptographic Key Establishment PP_APP_v1.3

FCS_CKM_EXT.2: Cryptographic Key Storage MOD_VPNC_V2.3

FCS_CKM_EXT.4: Cryptographic Key Destruction MOD_VPNC_V2.3

FCS_COP.1(1): Cryptographic Operation –
Encryption/Decryption

PP_APP_v1.3

FCS_COP.1(2): Cryptographic Operation - Hashing PP_APP_v1.3

FCS_COP.1(3): Cryptographic Operation - Signing PP_APP_v1.3

FCS_COP.1(4): Cryptographic Operation - Keyed-Hash
Message Authentication

PP_APP_v1.3

FCS_IPSEC_EXT.1: IPsec MOD_VPNC_V2.3

48

Requirement Class Requirement Component Source

FCS_RBG_EXT.1: Random Bit Generation Services PP_APP_v1.3

FCS_RBG_EXT.2: Random Bit Generation from Application PP_APP_v1.3

FCS_STO_EXT.1: Storage of Credentials PP_APP_v1.3

FDP: User Data Protection FDP_DAR_EXT.1: Encryption Of Sensitive Application Data PP_APP_v1.3

FDP_DEC_EXT.1: Access to Platform Resources PP_APP_v1.3

FDP_NET_EXT.1: Network Communications PP_APP_v1.3

FDP_RIP.2: Full Residual Information Protection MOD_VPNC_V2.3

FIA: Identification and
Authentication

FIA_PSK_EXT.1: Pre-Shared Key Composition MOD_VPNC_V2.3

FIA_X509_EXT.1: X.509 Certificate Validation PP_APP_v1.3

FIA_X509_EXT.2: X.509 Certificate Authentication PP_APP_v1.3

FMT: Security Management FMT_CFG_EXT.1: Secure by Default Configuration PP_APP_v1.3

FMT_MEC_EXT.1: Supported Configuration Mechanism PP_APP_v1.3

FMT_SMF.1: Specification of Management Functions PP_APP_v1.3

FMT_SMF.1/VPN: Specification of Management Functions
(VPN)

MOD_VPNC_V2.3

FPR: Privacy FPR_ANO_EXT.1: User Consent for Transmission of
Personally Identifiable Information

PP_APP_v1.3

FPT: Protection of the TSF FPT_AEX_EXT.1: Anti-Exploitation Capabilities PP_APP_v1.3

FPT_API_EXT.1: Use of Supported Services and APIs PP_APP_v1.3

FPT_IDV_EXT.1: Software Identification and Versions PP_APP_v1.3

FPT_LIB_EXT.1: Use of Third Party Libraries PP_APP_v1.3

FPT_TUD_EXT.1: Trusted Update (iterated by ST author) PP_APP_v1.3

FPT_TUD_EXT.2: Integrity for Installation and Update PP_APP_v1.3

FPT_TST_EXT.1/VPN: TSF Self-Test (VPN Client) (iterated
by ST author)

MOD_VPNC_V2.3

FTP: Trusted Path/Channels FTP_DIT_EXT.1: Protection of Data in Transit PP_APP_v1.3

49

8 TOE Summary Specification Rationale

Each subsection in Section 6, the TOE Summary Specification, describes a security function of the TOE.
Each description is followed with rationale that indicates which requirements are satisfied by aspects of
the corresponding security function. The set of security functions work together to satisfy all of the
security functions and assurance requirements. Furthermore, all of the security functions are necessary
in order for the TSF to provide the required security functionality.

This Section in conjunction with Section 6, the TOE Summary Specification, provides evidence that the
security functions are suitable to meet the TOE security requirements. The collection of security
functions work together to provide all of the security requirements. The security functions described in
the TOE summary specification are all necessary for the required security functionality in the TSF. Table
10: Security Functions vs. Requirements Mapping demonstrates the relationship between security
requirements and security functions.

Table 9: Security Functions vs. Requirements Mapping

 C
ry

p
to

gr
ap

h
ic

 s
u

p
p

o
rt

U
se

r
D

at
a

P
ro

te
ct

io
n

Id
e

n
ti

fi
ca

ti
o

n
 a

n
d

au
th

e
n

ti
ca

ti
o

n

Se
cu

ri
ty

 m
an

ag
e

m
e

n
t

P
ri

va
cy

P
ro

te
ct

io
n

 o
f

th
e

 T
SF

Tr
u

st
e

d

p
at

h
/c

h
an

n
e

ls

FCS_CKM_EXT.1 X

FCS_CKM_EXT.2 X

FCS_CKM.1(1) X

FCS_CKM.1(2) X

FCS_CKM.1/VPN X

FCS_CKM.2 X

FCS_CKM_EXT.4 X

FCS_COP.1(1) X

FCS_COP.1(2) X

FCS_COP.1(3) X

FCS_COP.1(4) X

FCS_IPSEC_EXT.1 X

FCS_STO_EXT.1 X

FCS_RBG_EXT.1 X

FCS_RBG_EXT.2 X

FDP_DEC_EXT.1 X

FDP_DAR_EXT.1 X

FDP_RIP.2 X

50

 C
ry

p
to

gr
ap

h
ic

 s
u

p
p

o
rt

U
se

r
D

at
a

P
ro

te
ct

io
n

Id
e

n
ti

fi
ca

ti
o

n
 a

n
d

au
th

e
n

ti
ca

ti
o

n

Se
cu

ri
ty

 m
an

ag
e

m
e

n
t

P
ri

va
cy

P
ro

te
ct

io
n

 o
f

th
e

 T
SF

Tr
u

st
e

d

p
at

h
/c

h
an

n
e

ls

FIA_PSK_EXT.1 X

FIA_X509_EXT.1 X

FIA_X509_EXT.2 X

FMT_CFG_EXT.1 X

FMT_MEC_EXT.1 X

FMT_SMF.1 X

FMT_SMF.1/VPN X

FPR_ANO_EXT.1 X

FPT_API_EXT.1 X

FPT_AEX_EXT.1 X

FPT_IDV_EXT.1 X

FPT_LIB_EXT.1 X

FPT_TUD_EXT.1(1) X

FPT_TUD_EXT.1(2) X

FPT_TUD_EXT.2 X

FPT_TST_EXT.1/VPN X

FTP_DIT_EXT.1 X

51

Appendix A: Windows Platform APIs

WS2_32.dll

WTSAPI32.dll

MSVCP100.dll

SHLWAPI.dll

CRYPT32.dll

ncrypt.dll

SHELL32.dll

VERSION.dll

WINMM.dll

ole32.dll

bcrypt.dll

dbghelp.dll

WININET.dll

RPCRT4.dll

CRYPTUI.dll

WINHTTP.dll

credui.dll

GDI32.dll

COMCTL32.dll

MSIMG32.dll

WINSPOOL.DRV

COMDLG32.dll

gdiplus.dll

oledlg.dll

OLEACC.dll

mscoree.dll

IMM32.dll

52

USER32.dll

MSVCR100.dll

ADVAPI32.dll

KERNEL32.dll

53

Appendix B: Android Platform APIs

android.animation.Animator;

android.annotation.SuppressLint;

android.annotation.SuppressLint;

android.annotation.TargetApi;

android.app.Activity;

android.app.Activity;

android.app.AlertDialog;

android.app.Application;

android.app.Application;

android.app.Dialog;

android.app.KeyguardManager;

android.app.KeyguardManager;

android.app.ListActivity;

android.app.ListActivity;

android.app.PendingIntent;

android.app.PendingIntent;

android.app.ProgressDialog;

android.app.Service;

android.app.Service;

android.content.ActivityNotFoundException;

android.content.BroadcastReceiver;

android.content.ComponentName;

android.content.ComponentName;

android.content.ContentResolver;

android.content.Context;

android.content.Context;

android.content.DialogInterface.OnCancelListener;

54

android.content.DialogInterface.OnClickListener;

android.content.DialogInterface;

android.content.DialogInterface;

android.content.Intent;

android.content.Intent;

android.content.IntentFilter;

android.content.IntentFilter;

android.content.pm.PackageInfo;

android.content.pm.PackageInfo;

android.content.pm.PackageManager.NameNotFoundException;

android.content.pm.PackageManager.NameNotFoundException;

android.content.pm.PackageManager;

android.content.pm.PackageManager;

android.content.res.Configuration;

android.content.res.Resources;

android.content.RestrictionsManager;

android.content.ServiceConnection;

android.content.ServiceConnection;

android.content.SharedPreferences.Editor;

android.content.SharedPreferences;

android.database.Cursor;

android.graphics.Bitmap;

android.graphics.Bitmap;

android.graphics.BitmapFactory;

android.graphics.BitmapFactory;

android.graphics.Canvas;

android.graphics.Color;

android.graphics.ColorFilter;

55

android.graphics.drawable.Drawable;

android.graphics.drawable.LayerDrawable;

android.graphics.Paint;

android.graphics.Path;

android.graphics.PixelFormat;

android.graphics.Rect;

android.graphics.RectF;

android.graphics.Typeface;

android.net.ConnectivityManager;

android.net.ConnectivityManager;

android.net.http.SslError;

android.net.NetworkInfo;

android.net.NetworkInfo;

android.net.Uri;

android.net.VpnService;

android.net.VpnService;

android.net.wifi.ScanResult;

android.net.wifi.SupplicantState;

android.net.wifi.WifiConfiguration.KeyMgmt;

android.net.wifi.WifiConfiguration;

android.net.wifi.WifiInfo;

android.net.wifi.WifiManager;

android.net.wifi.WifiManager;

android.os.AsyncTask;

android.os.AsyncTask;

android.os.Binder;

android.os.Binder;

android.os.Build;

56

android.os.Build;

android.os.Bundle;

android.os.Bundle;

android.os.Environment;

android.os.Environment;

android.os.Handler;

android.os.Handler;

android.os.IBinder;

android.os.IBinder;

android.os.Looper;

android.os.Looper;

android.os.Message;

android.os.Message;

android.os.Messenger;

android.os.Messenger;

android.os.ParcelFileDescriptor;

android.os.ParcelFileDescriptor;

android.os.PersistableBundle;

android.os.RemoteException;

android.os.RemoteException;

android.os.SystemClock;

android.os.SystemClock;

android.provider.MediaStore;

android.provider.Settings.Secure;

android.security.KeyChain;

android.security.KeyChain;

android.security.KeyChainAliasCallback;

android.security.KeyChainAliasCallback;

57

android.security.KeyChainException;

android.security.KeyChainException;

android.security.keystore.KeyInfo;

android.support.annotation.AnimRes;

android.support.annotation.AnimRes;

android.support.annotation.LayoutRes;

android.support.annotation.Nullable;

android.support.annotation.RequiresApi;

android.support.annotation.RequiresApi;

android.support.annotation.StringRes;

android.support.annotation.StringRes;

android.support.design.widget.TabLayout;

android.support.v4.app.ActivityCompat;

android.support.v4.app.Fragment;

android.support.v4.app.FragmentManager;

android.support.v4.app.FragmentPagerAdapter;

android.support.v4.app.FragmentTransaction;

android.support.v4.content.ContextCompat;

android.support.v4.content.FileProvider;

android.support.v4.view.ViewPager;

android.support.v7.app.AppCompatActivity;

android.support.v7.widget.Toolbar;

android.system.ErrnoException;

android.system.Os;

android.text.Editable;

android.text.format.Formatter;

android.text.format.Formatter;

android.text.InputType;

58

android.text.method.LinkMovementMethod;

android.text.TextUtils;

android.text.TextUtils;

android.text.TextWatcher;

android.util.AttributeSet;

android.util.DisplayMetrics;

android.util.Log;

android.util.Log;

android.view.animation.Animation;

android.view.animation.Animation;

android.view.animation.AnimationUtils;

android.view.animation.AnimationUtils;

android.view.animation.RotateAnimation;

android.view.inputmethod.InputMethodManager;

android.view.inputmethod.InputMethodManager;

android.view.KeyEvent;

android.view.LayoutInflater;

android.view.Menu;

android.view.MotionEvent;

android.view.View.OnClickListener;

android.view.View.OnClickListener;

android.view.View;

android.view.View;

android.view.ViewGroup;

android.view.ViewGroup;

android.webkit.CookieManager;

android.webkit.SslErrorHandler;

android.webkit.WebResourceError;

59

android.webkit.WebResourceRequest;

android.webkit.WebResourceResponse;

android.webkit.WebView;

android.webkit.WebViewClient;

android.widget.AdapterView.OnItemClickListener;

android.widget.AdapterView;

android.widget.ArrayAdapter;

android.widget.BaseAdapter;

android.widget.Button;

android.widget.Button;

android.widget.CheckBox;

android.widget.CheckBox;

android.widget.CheckedTextView;

android.widget.CompoundButton.OnCheckedChangeListener;

android.widget.CompoundButton.OnCheckedChangeListener;

android.widget.CompoundButton;

android.widget.CompoundButton;

android.widget.EditText;

android.widget.EditText;

android.widget.FrameLayout;

android.widget.ImageView;

android.widget.LinearLayout;

android.widget.ListView;

android.widget.ListView;

android.widget.RadioButton;

android.widget.RadioGroup;

android.widget.RelativeLayout;

android.widget.ScrollView;

60

android.widget.ScrollView;

android.widget.Switch;

android.widget.Switch;

android.widget.TextView;

android.widget.TextView;

android.widget.Toast;

android.widget.Toast;

android.widget.ViewSwitcher;

com.sec.enterprise.mdm.services.vpn.knoxvpn.IKnoxVpnService;

com.sec.vpn.knox.GenericVpnContext;

com.sec.vpn.knox.GenericVpnContext;

java.awt.datatransfer.DataFlavor;

java.io.*;

java.io.BufferedInputStream;

java.io.BufferedInputStream;

java.io.BufferedOutputStream;

java.io.BufferedOutputStream;

java.io.BufferedReader;

java.io.BufferedWriter;

java.io.ByteArrayInputStream;

java.io.ByteArrayInputStream;

java.io.ByteArrayOutputStream;

java.io.ByteArrayOutputStream;

java.io.DataInputStream;

java.io.DataOutputStream;

java.io.DataOutputStream;

java.io.EOFException;

java.io.File;

61

java.io.File;

java.io.FileFilter;

java.io.FileInputStream;

java.io.FileInputStream;

java.io.FileNotFoundException;

java.io.FileNotFoundException;

java.io.FileOutputStream;

java.io.FileOutputStream;

java.io.FilterInputStream;

java.io.FilterOutputStream;

java.io.InputStream;

java.io.InputStream;

java.io.InputStreamReader;

java.io.InputStreamReader;

java.io.IOException;

java.io.IOException;

java.io.LineNumberReader;

java.io.ObjectInputStream;

java.io.ObjectInputStream;

java.io.ObjectOutput;

java.io.ObjectOutputStream;

java.io.ObjectOutputStream;

java.io.OutputStream;

java.io.OutputStream;

java.io.OutputStreamWriter;

java.io.PipedInputStream;

java.io.PipedOutputStream;

java.io.PrintStream;

62

java.io.PushbackInputStream;

java.io.Reader;

java.io.Serializable;

java.io.StreamCorruptedException;

java.io.UnsupportedEncodingException;

java.io.Writer;

java.lang.reflect.Constructor;

java.math.*;

java.math.BigInteger;

java.math.BigInteger;

java.net.ConnectException;

java.net.CookieStore;

java.net.CookieStore;

java.net.HttpCookie;

java.net.HttpCookie;

java.net.HttpURLConnection;

java.net.Inet4Address;

java.net.InetAddress;

java.net.InetAddress;

java.net.InetSocketAddress;

java.net.InetSocketAddress;

java.net.NetworkInterface;

java.net.NetworkInterface;

java.net.ServerSocket;

java.net.Socket;

java.net.Socket;

java.net.SocketAddress;

java.net.SocketAddress;

63

java.net.SocketException;

java.net.SocketException;

java.net.UnknownHostException;

java.net.UnknownHostException;

java.net.URI;

java.net.URISyntaxException;

java.net.URL;

java.net.URL;

java.net.URLClassLoader;

java.nio.BufferUnderflowException;

java.nio.ByteBuffer;

java.nio.ByteOrder;

java.nio.charset.Charset;

java.nio.file.FileAlreadyExistsException;

java.nio.file.Files;

java.nio.file.Paths;

java.security.*;

java.security.AccessController;

java.security.AlgorithmParameterGenerator;

java.security.AlgorithmParameterGeneratorSpi;

java.security.AlgorithmParameters;

java.security.AlgorithmParametersSpi;

java.security.BasicPermission;

java.security.cert.*;

java.security.cert.Certificate;

java.security.cert.Certificate;

java.security.cert.CertificateEncodingException;

java.security.cert.CertificateEncodingException;

64

java.security.cert.CertificateException;

java.security.cert.CertificateException;

java.security.cert.CertificateExpiredException;

java.security.cert.CertificateExpiredException;

java.security.cert.CertificateFactory;

java.security.cert.CertificateFactory;

java.security.cert.CertificateFactorySpi;

java.security.cert.CertificateNotYetValidException;

java.security.cert.CertificateNotYetValidException;

java.security.cert.CertificateParsingException;

java.security.cert.CertPath;

java.security.cert.CertPathBuilder;

java.security.cert.CertPathBuilderException;

java.security.cert.CertPathBuilderResult;

java.security.cert.CertPathBuilderSpi;

java.security.cert.CertPathParameters;

java.security.cert.CertPathValidator;

java.security.cert.CertPathValidatorException;

java.security.cert.CertPathValidatorResult;

java.security.cert.CertPathValidatorSpi;

java.security.cert.CertSelector;

java.security.cert.CertStore;

java.security.cert.CertStoreException;

java.security.cert.CertStoreParameters;

java.security.cert.CertStoreSpi;

java.security.cert.CollectionCertStoreParameters;

java.security.cert.CRL;

java.security.cert.CRLException;

65

java.security.cert.CRLSelector;

java.security.cert.LDAPCertStoreParameters;

java.security.cert.PKIXBuilderParameters;

java.security.cert.PKIXCertPathBuilderResult;

java.security.cert.PKIXCertPathChecker;

java.security.cert.PKIXCertPathValidatorResult;

java.security.cert.PKIXParameters;

java.security.cert.PolicyNode;

java.security.cert.PolicyQualifierInfo;

java.security.cert.TrustAnchor;

java.security.cert.X509Certificate;

java.security.cert.X509Certificate;

java.security.cert.X509CertSelector;

java.security.cert.X509CRL;

java.security.cert.X509CRLEntry;

java.security.cert.X509CRLSelector;

java.security.cert.X509Extension;

java.security.DigestInputStream;

java.security.DigestOutputStream;

java.security.GeneralSecurityException;

java.security.GeneralSecurityException;

java.security.interfaces.DSAKey;

java.security.interfaces.DSAParams;

java.security.interfaces.DSAPrivateKey;

java.security.interfaces.DSAPublicKey;

java.security.interfaces.ECKey;

java.security.interfaces.ECPrivateKey;

java.security.interfaces.ECPublicKey;

66

java.security.interfaces.ECPublicKey;

java.security.interfaces.RSAPrivateCrtKey;

java.security.interfaces.RSAPrivateKey;

java.security.interfaces.RSAPublicKey;

java.security.interfaces.RSAPublicKey;

java.security.InvalidAlgorithmParameterException;

java.security.InvalidKeyException;

java.security.InvalidKeyException;

java.security.InvalidParameterException;

java.security.InvalidParameterException;

java.security.Key;

java.security.Key;

java.security.KeyFactory;

java.security.KeyFactory;

java.security.KeyFactorySpi;

java.security.KeyManagementException;

java.security.KeyManagementException;

java.security.KeyPair;

java.security.KeyPairGenerator;

java.security.KeyStore.LoadStoreParameter;

java.security.KeyStore.ProtectionParameter;

java.security.KeyStore;

java.security.KeyStore;

java.security.KeyStoreException;

java.security.KeyStoreException;

java.security.KeyStoreSpi;

java.security.MessageDigest;

java.security.NoSuchAlgorithmException;

67

java.security.NoSuchAlgorithmException;

java.security.NoSuchProviderException;

java.security.NoSuchProviderException;

java.security.Permission;

java.security.Principal;

java.security.Principal;

java.security.PrivateKey;

java.security.PrivateKey;

java.security.PrivilegedAction;

java.security.Provider;

java.security.ProviderException;

java.security.PublicKey;

java.security.PublicKey;

java.security.SecureRandom;

java.security.SecureRandom;

java.security.Security;

java.security.Security;

java.security.Signature;

java.security.Signature;

java.security.SignatureException;

java.security.SignatureException;

java.security.SignatureSpi;

java.security.spec.AlgorithmParameterSpec;

java.security.spec.DSAParameterSpec;

java.security.spec.DSAPrivateKeySpec;

java.security.spec.DSAPublicKeySpec;

java.security.spec.ECField;

java.security.spec.ECFieldF2m;

68

java.security.spec.ECFieldFp;

java.security.spec.ECGenParameterSpec;

java.security.spec.ECParameterSpec;

java.security.spec.ECPoint;

java.security.spec.ECPrivateKeySpec;

java.security.spec.ECPublicKeySpec;

java.security.spec.EllipticCurve;

java.security.spec.EllipticCurve;

java.security.spec.InvalidKeySpecException;

java.security.spec.InvalidKeySpecException;

java.security.spec.InvalidParameterSpecException;

java.security.spec.KeySpec;

java.security.spec.MGF1ParameterSpec;

java.security.spec.PKCS8EncodedKeySpec;

java.security.spec.PSSParameterSpec;

java.security.spec.RSAKeyGenParameterSpec;

java.security.spec.RSAPrivateCrtKeySpec;

java.security.spec.RSAPrivateKeySpec;

java.security.spec.RSAPublicKeySpec;

java.security.spec.X509EncodedKeySpec;

java.security.UnrecoverableKeyException;

java.security.UnrecoverableKeyException;

java.sql.Date;

java.text.DateFormat;

java.text.DateFormat;

java.text.DecimalFormat;

java.text.Format;

java.text.MessageFormat;

69

java.text.ParseException;

java.text.ParseException;

java.text.SimpleDateFormat;

java.text.SimpleDateFormat;

java.util.*;

java.util.ArrayList;

java.util.ArrayList;

java.util.Arrays;

java.util.Arrays;

java.util.Calendar;

java.util.Calendar;

java.util.Collection;

java.util.Collections;

java.util.Collections;

java.util.concurrent.atomic.AtomicBoolean;

java.util.concurrent.ConcurrentHashMap;

java.util.concurrent.Executors;

java.util.concurrent.Executors;

java.util.concurrent.ScheduledExecutorService;

java.util.concurrent.ScheduledExecutorService;

java.util.concurrent.TimeUnit;

java.util.concurrent.TimeUnit;

java.util.Date;

java.util.Date;

java.util.Enumeration;

java.util.Enumeration;

java.util.HashMap;

java.util.HashMap;

70

java.util.HashSet;

java.util.HashSet;

java.util.Hashtable;

java.util.Iterator;

java.util.Iterator;

java.util.LinkedHashSet;

java.util.LinkedList;

java.util.List;

java.util.List;

java.util.ListIterator;

java.util.ListIterator;

java.util.Locale;

java.util.Map;

java.util.Map;

java.util.MissingResourceException;

java.util.Properties;

java.util.Random;

java.util.regex.Matcher;

java.util.regex.Matcher;

java.util.regex.Pattern;

java.util.regex.Pattern;

java.util.ResourceBundle;

java.util.Scanner;

java.util.Scanner;

java.util.Set;

java.util.Set;

java.util.SimpleTimeZone;

java.util.StringTokenizer;

71

java.util.StringTokenizer;

java.util.Timer;

java.util.Timer;

java.util.TimerTask;

java.util.TimerTask;

java.util.TimeZone;

java.util.TimeZone;

java.util.Vector;

java.util.Vector;

java.util.zip.Deflater;

java.util.zip.DeflaterOutputStream;

java.util.zip.Inflater;

java.util.zip.InflaterInputStream;

java.util.zip.ZipEntry;

java.util.zip.ZipOutputStream;

javax.activation.ActivationDataFlavor;

javax.activation.CommandMap;

javax.activation.DataContentHandler;

javax.activation.DataHandler;

javax.activation.DataSource;

javax.activation.FileDataSource;

javax.activation.MailcapCommandMap;

javax.crypto.BadPaddingException;

javax.crypto.Cipher;

javax.crypto.Cipher;

javax.crypto.CipherInputStream;

javax.crypto.CipherOutputStream;

javax.crypto.CipherSpi;

72

javax.crypto.IllegalBlockSizeException;

javax.crypto.interfaces.DHKey;

javax.crypto.interfaces.DHPrivateKey;

javax.crypto.interfaces.DHPublicKey;

javax.crypto.interfaces.PBEKey;

javax.crypto.KeyAgreement;

javax.crypto.KeyAgreementSpi;

javax.crypto.KeyGenerator;

javax.crypto.KeyGenerator;

javax.crypto.KeyGeneratorSpi;

javax.crypto.Mac;

javax.crypto.MacSpi;

javax.crypto.NoSuchPaddingException;

javax.crypto.SecretKey;

javax.crypto.SecretKeyFactory;

javax.crypto.SecretKeyFactory;

javax.crypto.SecretKeyFactorySpi;

javax.crypto.ShortBufferException;

javax.crypto.spec.DESedeKeySpec;

javax.crypto.spec.DESedeKeySpec;

javax.crypto.spec.DESKeySpec;

javax.crypto.spec.DHGenParameterSpec;

javax.crypto.spec.DHParameterSpec;

javax.crypto.spec.DHPrivateKeySpec;

javax.crypto.spec.DHPublicKeySpec;

javax.crypto.spec.IvParameterSpec;

javax.crypto.spec.IvParameterSpec;

javax.crypto.spec.OAEPParameterSpec;

73

javax.crypto.spec.PBEKeySpec;

javax.crypto.spec.PBEParameterSpec;

javax.crypto.spec.PSource;

javax.crypto.spec.RC2ParameterSpec;

javax.crypto.spec.RC5ParameterSpec;

javax.crypto.spec.SecretKeySpec;

javax.crypto.spec.SecretKeySpec;

javax.mail.Address;

javax.mail.BodyPart;

javax.mail.Header;

javax.mail.internet.ContentType;

javax.mail.internet.InternetAddress;

javax.mail.internet.InternetHeaders;

javax.mail.internet.MimeBodyPart;

javax.mail.internet.MimeMessage;

javax.mail.internet.MimeMultipart;

javax.mail.internet.MimePart;

javax.mail.internet.SharedInputStream;

javax.mail.Message;

javax.mail.MessagingException;

javax.mail.Multipart;

javax.mail.Part;

javax.mail.Session;

javax.mail.Transport;

javax.naming.Context;

javax.naming.directory.Attribute;

javax.naming.directory.DirContext;

javax.naming.directory.InitialDirContext;

74

javax.naming.directory.SearchControls;

javax.naming.directory.SearchResult;

javax.naming.NamingEnumeration;

javax.naming.NamingException;

javax.net.ssl.HostnameVerifier;

javax.net.ssl.HostnameVerifier;

javax.net.ssl.HttpsURLConnection;

javax.net.ssl.HttpsURLConnection;

javax.net.ssl.KeyManager;

javax.net.ssl.KeyManager;

javax.net.ssl.SSLContext;

javax.net.ssl.SSLContext;

javax.net.ssl.SSLException;

javax.net.ssl.SSLException;

javax.net.ssl.SSLSession;

javax.net.ssl.SSLSession;

javax.net.ssl.SSLSocket;

javax.net.ssl.TrustManager;

javax.net.ssl.TrustManager;

javax.net.ssl.TrustManagerFactory;

javax.net.ssl.TrustManagerFactory;

javax.net.ssl.X509ExtendedKeyManager;

javax.net.ssl.X509ExtendedKeyManager;

javax.net.ssl.X509TrustManager;

javax.net.ssl.X509TrustManager;

javax.security.auth.x500.X500Principal;

javax.security.auth.x500.X500Principal;

javax.xml.parsers.DocumentBuilder;

75

javax.xml.parsers.DocumentBuilder;

javax.xml.parsers.DocumentBuilderFactory;

javax.xml.parsers.DocumentBuilderFactory;

org.apache.commons.io.IOUtils;

org.apache.http.client.CookieStore;

org.apache.http.client.entity.UrlEncodedFormEntity;

org.apache.http.client.entity.UrlEncodedFormEntity;

org.apache.http.client.HttpClient;

org.apache.http.client.HttpClient;

org.apache.http.client.methods.HttpGet;

org.apache.http.client.methods.HttpGet;

org.apache.http.client.methods.HttpPost;

org.apache.http.client.methods.HttpPost;

org.apache.http.client.protocol.ClientContext;

org.apache.http.client.protocol.ClientContext;

org.apache.http.client.utils.URIUtils;

org.apache.http.client.utils.URIUtils;

org.apache.http.conn.scheme.PlainSocketFactory;

org.apache.http.conn.scheme.PlainSocketFactory;

org.apache.http.conn.scheme.Scheme;

org.apache.http.conn.scheme.Scheme;

org.apache.http.conn.scheme.SchemeRegistry;

org.apache.http.conn.scheme.SchemeRegistry;

org.apache.http.conn.ssl.SSLSocketFactory;

org.apache.http.conn.ssl.SSLSocketFactory;

org.apache.http.cookie.Cookie;

org.apache.http.cookie.Cookie;

org.apache.http.Header;

76

org.apache.http.HttpEntity;

org.apache.http.HttpEntity;

org.apache.http.HttpResponse;

org.apache.http.HttpResponse;

org.apache.http.HttpStatus;

org.apache.http.HttpStatus;

org.apache.http.impl.client.DefaultHttpClient;

org.apache.http.impl.client.DefaultHttpClient;

org.apache.http.impl.conn.tsccm.ThreadSafeClientConnManager;

org.apache.http.impl.conn.tsccm.ThreadSafeClientConnManager;

org.apache.http.impl.cookie.BasicClientCookie;

org.apache.http.message.BasicNameValuePair;

org.apache.http.message.BasicNameValuePair;

org.apache.http.NameValuePair;

org.apache.http.NameValuePair;

org.apache.http.params.BasicHttpParams;

org.apache.http.params.BasicHttpParams;

org.apache.http.params.HttpConnectionParams;

org.apache.http.params.HttpConnectionParams;

org.apache.http.params.HttpParams;

org.apache.http.params.HttpParams;

org.apache.http.protocol.BasicHttpContext;

org.apache.http.protocol.BasicHttpContext;

org.apache.http.protocol.HttpContext;

org.apache.http.protocol.HttpContext;

org.json.JSONException;

org.json.JSONException;

org.json.JSONObject;

77

org.json.JSONObject;

org.w3c.dom.Document;

org.w3c.dom.Document;

org.w3c.dom.Element;

org.w3c.dom.Element;

org.w3c.dom.Node;

org.w3c.dom.Node;

org.w3c.dom.NodeList;

org.w3c.dom.NodeList

78

Appendix C: Linux Platform APIs

libdl.so

libxml2.so

libproxy.so

libdbus-1.so

libQt5Widgets.so

libQt5Gui.so

libQt5Network.so

libQt5Core.so

libpthread.so

libstdc++.so

libgcc_s.so

libc.so

ld-linux-x86-64.so

librt.so

libz.so

libicuuc.so

liblzma.so

libm.so

libsystemd.so

libgobject-2.0.so

libglib-2.0.so

libX11.so

libpng12.so

libharfbuzz.so

libGL.so

libicui18n.so

libpcre16.so

79

libicudata.so

libselinux.so

libgcrypt.so

libffi.so

libpcre.so

libxcb.so

libfreetype.so

libgraphite2.so

libexpat.so

libxcb-dri3.so

libxcb-present.so

libxcb-sync.so

libxshmfence.so

libglapi.so

libXext.so

libXdamage.so

libXfixes.so

libX11-xcb.so

libxcb-glx.so

libxcb-dri2.so

libXxf86vm.so

libdrm.so

libgpg-error.so

libXau.so

libXdmcp.so

