

vivo X Fold2 on OriginOS 3.0
Security Target

 Version: 1.0

 Status: Release

 Last Update: 2023-04-06

 2

Revision History

Revision Date Author(s) Changes to Previous Revision

1.0 2023-04-06 Di Li First release version.

 3

Table of Contents
1 INTRODUCTION ... 5

1.1 SECURITY TARGET IDENTIFICATION ... 5
1.2 TOE IDENTIFICATION .. 5
1.3 TOE OVERVIEW ... 6

1.3.1 TOE Type ... 6
1.3.2 TOE Usage ... 6
1.3.3 Required non-TOE Hardware/Software/Firmware ... 6
1.3.4 Major Security Features .. 7

1.4 TOE DESCRIPTION .. 7
1.4.1 Physical Boundaries .. 7
1.4.2 Logical Boundaries .. 7
1.4.3 TOE Documentation .. 10

2 CC CONFORMANCE CLAIM .. 11

2.1 CONFORMANCE RATIONALE .. 12

3 SECURITY PROBLEM DEFINITION ... 12

3.1 THREATS ... 12
3.2 ASSUMPTIONS ... 13
3.3 ORGANIZATIONAL SECURITY POLICIES ... 13

4 SECURITY OBJECTIVES ... 14

4.1 SECURITY OBJECTIVES FOR THE TOE ... 14
4.2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT .. 15

5 EXTENDED COMPONENTS DEFINITION .. 17

6 SECURITY REQUIREMENTS .. 20

6.1 TOE SECURITY FUNCTIONAL REQUIREMENTS ... 20
6.1.1 Security Audit (FAU) .. 25
6.1.2 Cryptographic support (FCS) ... 29
6.1.3 User data protection (FDP) ... 37
6.1.4 Identification and authentication (FIA) ... 38
6.1.5 Security management (FMT) .. 43
6.1.6 Protection of the TSF (FPT) .. 49
6.1.7 TOE access (FTA) ... 51
6.1.8 Trusted path/channels (FTP) ... 51

6.2 TOE SECURITY ASSURANCE REQUIREMENTS .. 53
6.2.1 Development (ADV) .. 53
6.2.2 Guidance documents (AGD) .. 54
6.2.3 Life-cycle support (ALC) ... 55
6.2.4 Tests (ATE) .. 56
6.2.5 Vulnerability assessment (AVA) .. 56

7 TOE SUMMARY SPECIFICATION ... 57

 4

7.1 SECURITY AUDIT ... 57
7.2 CRYPTOGRAPHIC SUPPORT ... 61
7.3 USER DATA PROTECTION ... 68
7.4 IDENTIFICATION AND AUTHENTICATION ... 72
7.5 SECURITY MANAGEMENT ... 75
7.6 PROTECTION OF THE TSF ... 75
7.7 TOE ACCESS ... 80
7.8 TRUSTED PATH/CHANNELS ... 80

8 TSF INVENTORY ... 82

 5

1 Introduction
This document is the Common Criteria (CC) Security Target (ST) for the vivo X Fold2 on OriginOS 3.0 product
to be evaluated as Mobile Devices in exact compliance with:

• Protection Profile for Mobile Device Fundamentals Version 3.3, dated 22 September, 2022
[PP_MDF_V3.3]

• PP-Module for Bluetooth Version 1.0, dated 15 April 2021 [MOD_BT_V1.0]

• PP-Module for WLAN Clients Version 1.0, dated 31 March 2022 [MOD_WLAN_CLI_V1.0]

• Functional Package for Transport Layer Security (TLS) Version 1.1, dated 1 March 2019
[TLS_PKG_V1.1]

This section contains the Security Target (ST) and Target of Evaluation (TOE) identifications, TOE overview,
and TOE description.
The Security Target contains the following additional sections:

• Conformance Claims (Section 2)

• Security Problem Definition (Section 3)

• Security Objectives (Section 4)

• Extended Components Definition (Section 5)

• Security Requirements (Section 6)

• TOE Summary Specification (Section 7)

1.1 Security Target Identification
ST Title: vivo X Fold2 on OriginOS 3.0 Security Target

Version: 1.0

Status: Release

Date: 2023-04-06

Sponsor: vivo Mobile Communication Co., Ltd

Developer: vivo Mobile Communication Co., Ltd

Keywords: PP_MDF_V3.3, Common Criteria, mobile device, TLS, HTTPS, Bluetooth, X509 certificate,
WLAN

1.2 TOE Identification
The TOE is vivo X Fold2 smartphone running on the OriginOS 3.0 operating system. The features provided
by the TOE is shown below:

Features vivo X Fold2

Processor Qualcomm Snapdragon® 8 Gen2

RAM 12 GB RAM

Storage 256/512 GB internal memory (non-expandable)

Display Main screen: 8.03 LTPO 120Hz E6 PWM DC dimming
Secondary screen: 6.53 LTPS 120Hz PWM DC dimming

 6

Camera Proactive: 16M*2
Rear camera:

- main camera: 50M OIS (IMX866VCS)
- wide-angle: 12M AF (IMX663)
- portrait: 12M OIS (IMX663)

Communications 5G, NFC, full-mode frequency band, WIFI7, GPS, Bluetooth 5.2

Battery 4800mAh/120W+50W wireless

Biometric Dual-screen single-point ultrasonic fingerprint

1.3 TOE Overview

1.3.1 TOE Type
The TOE Type is personally-owned mobile phone for both personal and enterprise use.

1.3.2 TOE Usage
The TOE is vivo X Fold2 smartphones running with OriginOS 3.0.
The TOE’s OS manages the device hardware and provides the technologies with a rich API set required to
implement native applications, it also provides the capability to approve or reject an application based upon
the API access that the application requires (or to grant applications access at runtime).
The TOE provides a built-in Mobile Device Management (MDM) framework API, giving management features
that may be utilized by external MDM solutions (not part of this evaluation), allowing enterprises to use
profiles to control some of the device settings. Security management capabilities are also provided to users
via the user interface of the device and to administrators through the installation of Configuration Profiles
on the device by using MDM solutions.
The TOE provides cryptographic services for the encryption of data-at-rest (DAR) within the TOE, for secure
communication channels, for protection of Configuration Profiles, and for use by apps. These cryptographic
services can also be used to establish a trusted channel to other IT entities.
User data protection is provided by encrypting all the user and mobile application data stored in the user’s
data partition, restricting access by apps and by restricting access until the user has been successfully
authenticated.
User identification and authentication is provided by a user defined passphrase where the minimum length
of the passphrase, passphrase rules, and the maximum number of consecutive failed authentication
attempts can be configured by an administrator. Any kind of Smart Lock mechanism shall be disabled in
the CC configuration of the TOE.
The TOE protects itself by having its own code and data protected from unauthorized access (using
hardware provided memory protection features), by encrypting internal user and TOE Security Functionality
(TSF) data using TSF protected keys and encryption / decryption functions, by self-tests, by ensuring the
integrity and authenticity of TSF updates and downloaded apps, and by locking the TOE upon user request
or after a defined time of user inactivity.

1.3.3 Required non-TOE Hardware/Software/Firmware
The TOE consists of smartphone hardware and the OriginOS, other components that running with TOE, e.g.,
user application, wireless AP, authentication server for EAP-TLS mutual authentication, MDM client and
server, and mobile data network, are considered as non-TOE components, but they are still required by the
TOE to perform administrative management functions or other operational functions for the end user or the
administrator.

 7

1.3.4 Major Security Features
This section summarizes the security functions provided by the TOE:

• Security Audit

• Cryptographic support

• User data protection

• Identification and authentication

• Security management

• Protection of the TSF

• TOE access

• Trusted path/channels

1.4 TOE Description
Table 1: The Detailed Description of Evaluated Devices

Device
Name

Model
Number

Chipset
Vendor CPU OS Version Build

Number Kernel Version

vivo X
Fold2 PD2266A Qualcomm Snapdragon

8 Gen2 OriginOS 3.0
PD2266_A_13.
0.4.73.W10.V0

00L1

Android: 13
Linux kernel: 5.15

1.4.1 Physical Boundaries
The TOE’s physical boundary is the physical perimeter of its enclosure. The TOE runs OriginOS as its
operating system on the Qualcomm Snapdragon 8 Gen2 processor (refer to as Application Processor). The
TOE does not include the user applications that run on top of the OriginOS, but does include controls that
limit application behavior. Furthermore, the device provides support for downloadable MDM agents to be
installed to limit or permit different functionality of the device. There is no built-in MDM agent pre-installed
on the device.
The TOE communicates and interacts with 802.11-2012 Access Points and mobile data networks to establish
network connectivity, and through that connectivity interacts with MDM servers that allow administrative
control of the TOE.
User documentation listed in Section 1.4.3 is also included in the TOE scope.

1.4.2 Logical Boundaries
This section describes the logical security features offered by the TOE listed in Section 1.3.4.

1.4.2.1 Security audit
The TOE implements a security log and logcat that are each stored in a circular memory buffer. An MDM
agent can read/fetch the security logs, can retrieve logcat logs, and then handle appropriately (potentially
storing the log to Flash or transmitting its contents to the MDM server). These log methods meet the logging
requirements outlined by FAU_GEN.1 in PP_MDF_V3.3.

1.4.2.2 Cryptographic support
The TOE provides cryptographic services via the following two cryptographic modules:

• BoringSSL: 0x1010107f

• Application Processor of X Fold2: Qualcomm SnapDragon 8 Gen2
BoringSSL is a fork of OpenSSL which is built into shared libraries of OriginOS. The cryptographic functions
provided by BoringSSL include symmetric key generation, encryption and decryption, asymmetric key

 8

generation and key establishment, cryptographic hashing, and keyed-hash message authentication. The
TOE also provides below functions which are used to implement security protocols and the encryption of
data-at-rest:

• Random number generation

• Data encryption and decryption

• Signature generation/verification

• Message digest

• Message authentication

• Key generation

• Key wrapping
Above listed Application Processors provides a set of FIPS 140-2 certified hardware cryptographic modules,
the cryptographic functions provided by Application Processors include symmetric key generation,
encryption and decryption, cryptographic hashing, and keyed-hash message authentication. The TOE also
provides below functions which are used to implement security protocols and the encryption of data-at-
rest:

• Random number generation

• Data encryption and decryption

• Message digest

• Message authentication

• Key generation

• Key derivation
Many of above listed cryptographic functions are also accessible as services to applications running on the
TOE allowing application developers to ensure their application meets the required criteria to remain
compliant to PP_MDF_V3.3 standards.

1.4.2.3 User data protection
The TOE controls access to system services by hosted applications, including protection of the Trust Anchor
Database. Additionally, User data in files is protected using cryptographic functions, ensuring this data
remains protected even if the device gets lost or is stolen. Data is protected such that only the app that
owns the data can access it. The TOE’s evaluated configuration supports Android Enterprise profiles to
provide additional separation between application and application data belonging to the Enterprise profile.
Please see the Admin Guide for additional details regarding how to set up and use Enterprise profiles.

1.4.2.4 Identification and authentication
Except for answering calls, making emergency calls, using the cameras, using the flashlight, using the quick
settings, and checking notifications, users need to authenticate using a passcode. The user is required to
use the passcode authentication mechanism under the following conditions.

• Turn on or restart the device

• Unlock the device for the first time after reboot

• Update software

• Erase the device

• View or change passcode settings

• Install enterprise profiles
The passcode can be configured for a minimum length, for dedicated passcode policies, and for a maximum
lifetime. When entered, passcodes are obscured and the frequency of entering passcodes is limited as well
as the number of consecutive failed attempts of entering the passcode.

 9

The TOE also enters a locked state after a (configurable) time of user inactivity, and the user is required to
enter his passcode to unlock the TOE.
External entities connecting to the TOE via a secure protocol (Extensible Authentication Protocol Transport
Layer Security (EAP-TLS), Transport Layer Security (TLS)) can be authenticated using X.509 certificates.

1.4.2.5 Security management
The TOE provides all the interfaces necessary to manage the security functions identified throughout this
Security Target as well as other functions commonly found in mobile devices. Many of the available
functions are available to users of the TOE while many are restricted to administrators operating through a
Mobile Device Management solution once the TOE has been enrolled. Once the TOE has been enrolled and
then un-enrolled, it will remove Enterprise applications and remove MDM policies

1.4.2.6 Protection of the TSF
Some of the functions the TOE implements to protect the TSF and TSF data are as follows:

• Protection of cryptographic keys - they are not accessible or exportable using the application
processor’s hardware.

• Protection of REKs - The TOE disallows all read access to the Root Encryption Key and retains all
keys derived from the REK within its the Trusted Execution Environment (TEE). Application software
can only use keys derived from the REK by reference and receive the result.

• The TOE enforces read, write, and execute memory page protections, uses address space layout
randomization, and stack-based buffer overflow protections to minimize the potential to exploit
application flaws. It also protects itself from modification by applications as well as to isolate the
address spaces of applications from one another to protect those applications.

• Digital signature protection of the TSF image - all updates to the TSF need to be digitally signed.

• Software/firmware integrity self-test upon start-up - the TOE will not go operational when this test
fails.

• Digital signature verification for apps.

• Access to defined TSF data and TSF services only when the TOE is unlocked.

• The TOE provides its own timing mechanism to ensure that reliable time information is available
(e.g., for log accountability).

1.4.2.7 TOE access
The TSF provides functions to lock the TOE upon request by user or after an administrator configurable time
of inactivity.
The TOE also has the capability to display an administrator specified (using the TOE’s MDM API) advisory
message (banner) when the user unlocks the TOE for the first use after reboot.
The TOE is also able to attempt to connect to wireless networks as configured.

1.4.2.8 Trusted path/channels
The TOE supports the use of the following cryptographic protocols that define a trusted channel between
itself and another trusted IT product.

• IEEE 802.11-2012

• IEEE 802.11ac-2013 (a.k.a. Wi-Fi 5)

• IEEE 802.11ax (a.k.a. Wi-Fi 6)

• IEEE 802.1X

• EAP-TLS (1.1, 1.2)

• TLS (1.1, 1.2)

• HTTPS

 10

• Bluetooth (5.0)

1.4.3 TOE Documentation
Table 2: TOE Documentation List

Reference Document Name Version

[CC_GUIDE] vivo X Fold2 on OriginOS 3.0 Administrator Guidance 1.0

 11

2 CC Conformance Claim
This TOE is conformant to the following CC specifications:

• Common Criteria for Information Technology Security Evaluation Part 2: Security functional
components, Version 3.1, Revision 5, April, 2017.

- Part 2 Extended

• Common Criteria for Information Technology Security Evaluation Part 3: Security assurance
components, Version 3.1 Revision 5, April, 2017.

- Part 3 Extended

• PP Claims:

- Exact conformance: Protection Profile for Mobile Device Fundamentals Version 3.3,
dated 22 September, 2022 [PP_MDF_V3.3]

- Exact conformance: PP-Module for Bluetooth Version 1.0, dated 15 April 2021
[MOD_BT_V1.0]

- Exact conformance: PP-Module for WLAN Clients Version 1.0, dated 31 March 2022
[MOD_WLAN_CLI_V1.0]

• Package Claims:

- Functional Package for Transport Layer Security (TLS) Version 1.1 Conformant, dated 1
March 2019 [TLS_PKG_V1.1]

• Technical Decisions, all applicable technical decisions until 2023-04-06:
Table 3: Technical Decisions List

TD No. Applied Rationale

TD0442 – TLS_PKG_V1.1 Yes FCS_TLSC_EXT.1.1 applies

TD0469 – TLS_PKG_V1.1 No TOE does not support TLS in server mode

TD0499 – TLS_PKG_V1.1 Yes FCS_TLSC_EXT.1.2 applies

TD0513 – TLS_PKG_V1.1 Yes FCS_TLSC_EXT.1.3 applies

TD0588 – TLS_PKG_V1.1 No TOE does not support TLS in server mode

TD0600 – MOD_BT_V1.0 Yes MOD_BT_V1.0 is up to date

TD0640 – MOD_BT_V1.0 Yes FTP_BLT_EXT.3 applies

TD0650 – MOD_BT_V1.0 No TOE does not claim the conformance to
MOD_VPNC_V2.3 and 2.4

TD0667 – MOD_WLAN_CLI_V1.0 Yes FMT_SMF.1/WLAN is Optional/Objective

TD0671 – MOD_BT_V1.0 Yes MOD_BT_V1.0 is up to date

TD0674 – MOD_WLAN_CLI_V1.0 Yes MOD_WLAN_CLI_V1.0 is up to date

TD0677 – PP_MDF_V3.3 Yes FCS_RBG_EXT.1 applies

TD0685 - MOD_BT_V1.0 Yes MOD_BT_V1.0 is up to date

 12

TD0689 - PP_MDF_V3.3 Yes PP_MDF_V3.3 is up to date

TD0703 - MOD_WLAN_CLI_V1.0 Yes FIA_X509_EXT.2/WLAN applies

TD0704 - PP_MDF_V3.3 Yes PP_MDF_V3.3 is up to date

TD0707 - MOD_BT_V1.0 Yes MOD_BT_V1.0 is up to date

TD0710 - MOD_WLAN_CLI_V1.0 Yes MOD_WLAN_CLI_V1.0 is up to date

TD0724 - PP_MDF_V3.3 Yes FAU_GEN.1.1 applies

TD0726 - TLS_PKG_V1.1 No TOE does not support TLS in server mode

2.1 Conformance Rationale
The ST conforms to PP_MDF_V3.3 / MOD_WLAN_CLI_V1.0 / MOD_BT_V1.0 / TLS_PKG_V1.1. The security
problem definition, security objectives, and security requirements have been drawn from the PPs.

3 Security Problem Definition
The security problem definition has been taken from PP_MDF_V3.3 and MOD_WLAN_CLI_V1.0. It is
reproduced here for the convenience of the reader. MOD_BT_V1.0 and TLS_PKG_V1.1 do not specify any
additional threats, organizational security policies or assumptions.

3.1 Threats
T.NETWORK_EAVESDROP (PP_MDF_V3.3)

An attacker is positioned on a wireless communications channel or elsewhere on the network
infrastructure. Attackers may monitor and gain access to data exchanged between the Mobile
Device and other endpoints.

T.NETWORK_ATTACK (PP_MDF_V3.3)
An attacker is positioned on a wireless communications channel or elsewhere on the network
infrastructure. Attackers may initiate communications with the Mobile Device or alter
communications between the Mobile Device and other endpoints in order to compromise the
Mobile Device. These attacks include malicious software update of any applications or system
software on the device. These attacks also include malicious web pages or email attachments,
which are usually delivered to devices over the network.

T.PHYSICAL_ACCESS (PP_MDF_V3.3)
An attacker, with physical access, may attempt to access user data on the Mobile Device including
credentials. These physical access threats may involve attacks, which attempt to access the
device through external hardware ports, impersonate the user authentication mechanisms,
through its user interface, and also through direct and possibly destructive access to its storage
media. Note: Defending against device re-use after physical compromise is out of scope for this
Protection Profile.

T.MALICIOUS_APP (PP_MDF_V3.3)
Applications loaded onto the Mobile Device may include malicious or exploitable code. This code
could be included intentionally or unknowingly by the developer, perhaps as part of a software
library. Malicious apps may attempt to exfiltrate data to which they have access. They may also
conduct attacks against the platform’s system software, which will provide them with additional
privileges and the ability to conduct further malicious activities. Malicious applications may be
able to control the device's sensors (GPS, camera, microphone) to gather intelligence about the
user's surroundings even when those activities do not involve data resident or transmitted from

 13

the device. Flawed applications may give an attacker access to perform network-based or physical
attacks that otherwise would have been prevented.

T.PERSISTENT_PRESENCE (PP_MDF_V3.3)
Persistent presence on a device by an attacker implies that the device has lost integrity and
cannot regain it. The device has likely lost this integrity due to some other threat vector, yet the
continued access by an attacker constitutes an on-going threat in itself. In this case, the device
and its data may be controlled by an adversary as well as by its legitimate owner.

T.TSF_FAILURE (MOD_WLAN_CLI_V1.0)
Security mechanisms of the TOE generally build up from a primitive set of mechanisms (e.g.,
memory management, privileged modes of process execution) to more complex sets of
mechanisms. Failure of the primitive mechanisms could lead to a compromise in more complex
mechanisms, resulting in a compromise of the TSF.

T.UNAUTHORIZED ACCESS (MOD_WLAN_CLI_V1.0)
A user may gain unauthorized access to the TOE data and TOE executable code. A malicious user,
process, or external IT entity may masquerade as an authorized entity in order to gain an
authorized access to data or TOE resources. A malicious user, process, or external IT entity may
misrepresent itself as the TOE to obtain identification and authentication data.

T.UNDETECTED_ACTIONS (MOD_WLAN_CLI_V1.0)
Malicious remote users or external IT entities may take actions that adversely affect the security
of the TOE. These actions may remain undetected and thus their effects cannot be effectively
mitigated.

3.2 Assumptions
A.CONFIG (PP_MDF_V3.3)

It is assumed that the TOE’s security functions are configured correctly in a manner to ensure that
the TOE security policies will be enforced on all applicable network traffic flowing among the
attached networks.

A.NOTIFY (PP_MDF_V3.3)
It is assumed that the mobile user will immediately notify the administrator if the Mobile Device is
lost or stolen.

A.PRECAUTION (PP_MDF_V3.3)
It is assumed that the mobile user exercises precautions to reduce the risk of loss or theft of the
Mobile Device.

A.PROPER_USER (PP_MDF_V3.3)
Mobile Device users are not willfully negligent or hostile, and use the device within compliance of
a reasonable Enterprise security policy.

A.NO_TOE_BYPASS (MOD_WLAN_CLI_V1.0)
Information cannot flow between the wireless client and the internal wired network without
passing through the TOE.

A.TRUSTED_ADMIN (MOD_WLAN_CLI_V1.0)
TOE Administrators are trusted to follow and apply all administrator guidance in a trusted manner.

3.3 Organizational Security Policies
There are no OSPs for the Mobile Device.

 14

4 Security Objectives
The security objectives for the TOE have been taken from PP_MDF_V3.3 and MOD_WLAN_CLI_V1.0. It is
reproduced here for the convenience of the reader. PP_MDF_V3.3 offers additional information about the
identified security objectives as well as a security objectives rationale, but that has not been reproduced
here and PP_MDF_V3.3 should be consulted if there is interest in that material. PP-Module for Bluetooth
does not define any additional security objectives.

4.1 Security Objectives for the TOE
The security objectives for the Mobile Device are defined as follows. They are reproduced here for the
convenience of the reader.

O.PROTECTED_COMMS (PP_MDF_V3.3)
To address the network eavesdropping (T.NETWORK_EAVESDROP) and network attack
(T.NETWORK_ATTACK) threats described in Section 3.1 Threats, concerning wireless transmission of
Enterprise and user data and configuration data between the TOE and remote network entities,
conformant TOEs will use a trusted communication path. The TOE must be capable of
communicating using mutually authenticated TLS, EAP-TLS, HTTPS, 802.1X, and 802.11-2012. The
TOE may optionally communicate using these standard protocols: IPsec, mutually-authenticated
DTLS, or Bluetooth. These protocols are specified by RFCs that offer a variety of implementation
choices. Requirements have been imposed on some of these choices (particularly those for
cryptographic primitives) to provide interoperability and resistance to cryptographic attack.
While conformant TOEs must support all of the choices specified in the ST including any optional
SFRs defined in this PP, they may support additional algorithms and protocols. If such additional
mechanisms are not evaluated, guidance must be given to the administrator to make clear the fact
that they were not evaluated.

O.STORAGE (PP_MDF_V3.3)
To address the issue of loss of confidentiality of user data in the event of loss of a Mobile Device
(T.PHYSICAL_ACCESS), conformant TOEs will use data-at-rest protection. The TOE will be capable of
encrypting data and keys stored on the device and will prevent unauthorized access to encrypted
data.

O.CONFIG (PP_MDF_V3.3)
To ensure a Mobile Device protects user and enterprise data that it may store or process, conformant
TOEs will provide the capability to configure and apply security policies defined by the user and the
Enterprise Administrator. If Enterprise security policies are configured these must be applied in
precedence of user specified security policies.

O.AUTH (PP_MDF_V3.3)
To address the issue of loss of confidentiality of user data in the event of loss of a Mobile Device
(T.PHYSICAL_ACCESS), users are required to enter an authentication factor to the device prior to
accessing protected functionality and data. Some non-sensitive functionality (e.g., emergency
calling, text notification) can be accessed prior to entering the authentication factor. The device will
automatically lock following a configured period of inactivity in an attempt to ensure authorization
will be required in the event of the device being lost or stolen.
Authentication of the endpoints of a trusted communication path is required for network access to
ensure attacks are unable to establish unauthorized network connections to undermine the integrity
of the device.
Repeated attempts by a user to authorize to the TSF will be limited or throttled to enforce a delay
between unsuccessful attempts.

O.INTEGRITY (PP_MDF_V3.3)
To ensure the integrity of the Mobile Device is maintained conformant TOEs will perform self-tests
to ensure the integrity of critical functionality, software/firmware and data has been maintained.
The user shall be notified of any failure of these self-tests. This will protect against the threat
T.PERSISTENT.

 15

To address the issue of an application containing malicious or flawed code (T.MALICIOUS_APP), the
integrity of downloaded updates to software/firmware will be verified prior to installation/execution
of the object on the Mobile Device. In addition, the TOE will restrict applications to only have access
to the system services and data they are permitted to interact with. The TOE will further protect
against malicious applications from gaining access to data they are not authorized to access by
randomizing the memory layout.

O.PRIVACY (PP_MDF_V3.3)
In a BYOD environment (use cases 3 and 4), a personally-owned mobile device is used for both
personal activities and enterprise data. Enterprise management solutions may have the technical
capability to monitor and enforce security policies on the device. However, the privacy of the
personal activities and data must be ensured. In addition, since there are limited controls that the
enterprise can enforce on the personal side, separation of personal and enterprise data is
needed. This will protect against the T.MALICIOUS_APP and T.PERSISTENT_PRESENCE
threats.

O.AUTH_COMM (MOD_WLAN_CLI_V1.0)
The TOE will provide a means to ensure that it is communicating with an authorized access point
and not some other entity pretending to be an authorized access point, and will provide assurance
to the access point of its identity.

O.CRYPTOGRAPHIC_FUNCTIONS (MOD_WLAN_CLI_V1.0)
The TOE will provide or use cryptographic functions (i.e., encryption/decryption and digital signature
operations) to maintain the confidentiality and allow for detection of modification of data that are
transmitted outside the TOE and its host environment.

O.SELF_TEST (MOD_WLAN_CLI_V1.0)
The TOE will provide the capability to test some subset of its security functionality to ensure it is
operating properly.

O.SYSTEM_MONITORING (MOD_WLAN_CLI_V1.0)
The TOE will provide the capability to generate audit data.

O.TOE_ADMINISTRATION (MOD_WLAN_CLI_V1.0)
The TOE will provide mechanisms to allow administrators to be able to configure the TOE.

O.WIRELESS_ACCESS_POINT_CONNECTION (MOD_WLAN_CLI_V1.0)
The TOE will provide the capability to restrict the wireless access points to which it will connect.

4.2 Security Objectives for the Operational Environment
OE.CONFIG (PP_MDF_V3.3)

TOE administrators will configure the Mobile Device security functions correctly to create the
intended security policy.

OE.NOTIFY (PP_MDF_V3.3)
The Mobile User will immediately notify the administrator if the Mobile Device is lost or stolen.

OE.PRECAUTION (PP_MDF_V3.3)
The mobile device user exercises precautions to reduce the risk of loss or theft of the Mobile Device.

OE.DATA_PROPER_USER (PP_MDF_V3.3)
Administrators take measures to ensure that mobile device users are adequately vetted against
malicious intent and are made aware of the expectations for appropriate use of the device.

OE.NO_TOE_BYPASS (MOD_WLAN_CLI_V1.0)

 16

Information cannot flow between external and internal networks located in different enclaves
without passing through the TOE.

OE.TRUSTED_ADMIN (MOD_WLAN_CLI_V1.0)
TOE administrators are trusted to follow and apply all administrator guidance in a trusted manner.

 17

5 Extended Components Definition
All of the extended requirements in this ST have been drawn from PP_MDF_V3.3, MOD_BT_V1.0,
MOD_WLAN_CLI_V1.0 and TLS_PKG_V1.1. PP_MDF_V3.3, MOD_BT_V1.0, MOD_WLAN_CLI_V1.0 and
TLS_PKG_V1.1 define the following extended requirements and, since they are not redefined in this ST,
PP_MDF_V3.3, MOD_BT_V1.0, MOD_WLAN_CLI_V1.0 and TLS_PKG_V1.1 should be consulted for more
information in regard to those CC extensions.
Extended SFRs:

• PP_MDF_V3.3: FCS_CKM_EXT.1 Cryptographic Key Support

• PP_MDF_V3.3: FCS_CKM_EXT.2 Cryptographic Key Random Generation

• PP_MDF_V3.3: FCS_CKM_EXT.3 Cryptographic Key Generation

• PP_MDF_V3.3: FCS_CKM_EXT.4 Key Destruction

• PP_MDF_V3.3: FCS_CKM_EXT.5 TSF Wipe

• PP_MDF_V3.3: FCS_CKM_EXT.6 Salt Generation

• MOD_BT_V1.0: FCS_CKM_EXT.8 Bluetooth Key Generation

• PP_MDF_V3.3: FCS_HTTPS_EXT.1 HTTPS Protocol

• PP_MDF_V3.3: FCS_IV_EXT.1 Initialization Vector Generation

• PP_MDF_V3.3: FCS_RBG_EXT.1 Random Bit Generation

• PP_MDF_V3.3: FCS_SRV_EXT.1 Cryptographic Algorithm Services

• PP_MDF_V3.3: FCS_STG_EXT.1 Cryptographic Key Storage

• PP_MDF_V3.3: FCS_STG_EXT.2 Encrypted Cryptographic Key Storage

• PP_MDF_V3.3: FCS_STG_EXT.3 Integrity of Encrypted Key Storage

• TLS_PKG_V1.1: FCS_TLS_EXT.1 TLS Protocol

• TLS_PKG_V1.1: FCS_TLSC_EXT.1 TLS Client Protocol

• MOD_WLAN_CLI_V1.0: FCS_TLSC_EXT.1/WLAN TLS Client Protocol (EAP-TLS for WLAN)

• MOD_WLAN_CLI_V1.0: FCS_WPA_EXT.1 Supported WPA Versions

• MOD_WLAN_CLI_V1.0: FCS_TLSC_EXT.2.1 TLS Client Support for Supported Groups Extension
(EAP-TLS for WLAN)

• TLS_PKG_V1.1: FCS_TLSC_EXT.2 TLS Client Support for Mutual Authentication

• TLS_PKG_V1.1: FCS_TLSC_EXT.4 TLS Client Support for Renegotiation

• TLS_PKG_V1.1: FCS_TLSC_EXT.5 TLS Client Support for Supported Groups Extension

• PP_MDF_V3.3: FDP_ACF_EXT.1 Access Control for System Services

• PP_MDF_V3.3: FDP_ACF_EXT.2 Access Control for System Resources

• PP_MDF_V3.3: FDP_DAR_EXT.1 Protected Data Encryption

• PP_MDF_V3.3: FDP_DAR_EXT.2 Sensitive Data Encryption

• PP_MDF_V3.3: FDP_IFC_EXT.1 Subset Information Flow Control

• PP_MDF_V3.3: FDP_STG_EXT.1 User Data Storage

• PP_MDF_V3.3: FDP_UPC_EXT.1/APPS Inter-TSF User Data Transfer Protection (Applications)

• PP_MDF_V3.3: FIA_AFL_EXT.1 Authentication Failure Handling

• MOD_BT_V1.0: FIA_BLT_EXT.1 Bluetooth User Authorization

 18

• MOD_BT_V1.0: FIA_BLT_EXT.2 Bluetooth Mutual Authentication

• MOD_BT_V1.0: FIA_BLT_EXT.3 Rejection of Duplicate Bluetooth Connections

• MOD_BT_V1.0: FIA_BLT_EXT.4 Secure Simple Pairing

• MOD_BT_V1.0: FIA_BLT_EXT.6 Trusted Bluetooth Device User Authorization

• MOD_BT_V1.0: FIA_BLT_EXT.7 Untrusted Bluetooth Device User Authorization

• MOD_WLAN_CLI_V1.0: FIA_PAE_EXT.1 Port Access Entity Authentication

• PP_MDF_V3.3: FIA_PMG_EXT.1 Password Management

• PP_MDF_V3.3: FIA_TRT_EXT.1 Authentication Throttling

• PP_MDF_V3.3: FIA_UAU_EXT.1 Authentication for Cryptographic Operation

• PP_MDF_V3.3: FIA_UAU_EXT.2 Timing of Authentication

• PP_MDF_V3.3: FIA_X509_EXT.1 X.509 Validation of Certificates

• PP_MDF_V3.3: FIA_X509_EXT.2 X.509 Certificate Authentication

• MOD_WLAN_CLI_V1.0: FIA_X509_EXT.1/WLAN X.509 Certificate Validation

• MOD_WLAN_CLI_V1.0: FIA_X509_EXT.2/WLAN X.509 Certificate Authentication (EAP-TLS for
WLAN)

• MOD_WLAN_CLI_V1.0: FIA_X509_EXT.6 X.509 Certificate Storage and Management

• PP_MDF_V3.3: FIA_X509_EXT.3 Request Validation of Certificates

• PP_MDF_V3.3: FMT_MOF_EXT.1 Management of Security Functions Behavior

• MOD_BT_V1.0: FMT_SMF_EXT.1/BT Specification of Management Functions

• PP_MDF_V3.3: FMT_SMF_EXT.2 Specification of Remediation Actions

• PP_MDF_V3.3: FPT_AEX_EXT.1 Application Address Space Layout Randomization

• PP_MDF_V3.3: FPT_AEX_EXT.2 Memory Page Permissions

• PP_MDF_V3.3: FPT_AEX_EXT.3 Stack Overflow Protection

• PP_MDF_V3.3: FPT_AEX_EXT.4 Domain Isolation

• PP_MDF_V3.3: FPT_JTA_EXT.1 JTAG Disablement

• PP_MDF_V3.3: FPT_KST_EXT.1 Key Storage

• PP_MDF_V3.3: FPT_KST_EXT.2 No Key Transmission

• PP_MDF_V3.3: FPT_KST_EXT.3 No Plaintext Key Export

• PP_MDF_V3.3: FPT_NOT_EXT.1 Self-Test Notification

• PP_MDF_V3.3: FPT_TST_EXT.1 TSF Cryptographic Functionality Testing

• MOD_WLAN_CLI_V1.0: FPT_TST_EXT.3/WLAN TSF Cryptographic Functionality Testing (WLAN
Client)

• PP_MDF_V3.3: FPT_TST_EXT.2/PREKERNEL TSF Integrity Checking (Pre-Kernel)

• PP_MDF_V3.3: FPT_TUD_EXT.1 Trusted Update: TSF Version Query

• PP_MDF_V3.3: FPT_TUD_EXT.2 TSF Update Verification

• PP_MDF_V3.3: FPT_TUD_EXT.3 Application Signing

• PP_MDF_V3.3: FTA_SSL_EXT.1 TSF- and User-initiated Locked State

• MOD_WLAN_CLI_V1.0: FTA_WSE_EXT.1 Wireless Network Access

 19

• MOD_BT_V1.0: FTP_BLT_EXT.1 Bluetooth Encryption

• MOD_BT_V1.0: FTP_BLT_EXT.2 Persistence of Bluetooth Encryption

• MOD_BT_V1.0: FTP_BLT_EXT.3/BR Bluetooth Encryption Parameters (BR/EDR)

• MOD_BT_V1.0: FTP_BLT_EXT.3/LE Bluetooth Encryption Parameters (LE)

• PP_MDF_V3.3: FTP_ITC_EXT.1 Trusted Channel Communication
Extended SARs:

• ALC_TSU_EXT.1: Timely Security Updates

 20

6 Security Requirements
This section defines the Security Functional Requirements (SFRs) and Security Assurance Requirements
(SARs) that serve to represent the security functional claims for the Target of Evaluation (TOE) and to
scope the evaluation effort.
The SFRs have all been drawn from PP_MDF_V3.3, MOD_WLAN_CLI_V1.0, MOD_BT_V1.0 and
TLS_PKG_V1.1. The refinements and operations already performed in above listed PPs are not identified
(e.g., highlighted) here, rather the requirements have been copied from above listed PPs and any
residual operations have been completed herein. Of particular note, above listed PPs made a number of
refinements and completed some of the SFR operations defined in the Common Criteria (CC) and that
above listed PPs should be consulted to identify those changes if necessary.
The SARs are also drawn from PP_MDF_V3.3 which includes all the SARs for EAL 1 augmented with
ALC_TSU_EXT.1. However, the SARs are effectively refined since requirement-specific 'Assurance
Activities' are defined in PP_MDF_V3.3, MOD_WLAN_CLI_V1.0, MOD_BT_V1.0 and TLS_PKG_V1.1 that
serve to ensure corresponding evaluations will yield more practical and consistent assurance than the
EAL 1 assurance requirements alone. PP_MDF_V3.3 should be consulted for the assurance activity
definitions. MOD_WLAN_CLI_V1.0 and MOD_BT_V1.0 do not define any SARs beyond those defined within
the base PP_MDF_V3.3.
Conventions
The following conventions have been applied in this document:

• Security Functional Requirements – Part 1 of the CC defines the approved set of operations that
may be applied to functional requirements: iteration, assignment, selection, and refinement.

o Assignment: allows the specification of an identified parameter. Assignments are
indicated using bold and are surrounded by brackets (e.g., [assignment]). Note that an
assignment within a selection would be identified in italics and with embedded bold
brackets (e.g., [[selected-assignment]]).

o Selection: allows the specification of one or more elements from a list. Selections are
indicated using bold italics and are surrounded by brackets (e.g., [selection]).

o Refinement: allows the addition of details. Refinements are indicated using bold for
additions (e.g., “… all objects”), and strikethrough for deletions (e.g., “… some legacy
protocol …”).

o Iteration operation: is indicated by appending the SFR name with a slash and unique
identifier suggesting the purpose of the operation (e.g., "/EXAMPLE1.")

6.1 TOE Security Functional Requirements
The following table identifies the SFRs that are implemented by TOE.

Table 4: TOE Security Functional Components

Requirement Class Requirement Component

FAU: Security Audit PP_MDF_V3.3: FAU_GEN.1 Audit Data Generation

MOD_BT_V1.0: FAU_GEN.1/BT Audit Data Generation (Bluetooth)

MOD_WLAN_CLI_V1.0: FAU_GEN.1/WLAN Audit Data Generation
(Wireless LAN)

PP_MDF_V3.3: FAU_SAR.1 Audit Review

PP_MDF_V3.3: FAU_STG.1 Audit Storage Protection

PP_MDF_V3.3: FAU_STG.4 Prevention of Audit Data Loss

 21

FCS: Cryptographic support PP_MDF_V3.3: FCS_CKM.1 Cryptographic key generation

MOD_WLAN_CLI_V1.0: FCS_CKM.1/WPA Cryptographic key
generation (Symmetric Keys for WPA2/WPA3 Connections)

PP_MDF_V3.3: FCS_CKM.2/UNLOCKED Cryptographic Key
Establishment

PP_MDF_V3.3: FCS_CKM.2/LOCKED Cryptographic Key
Establishment

MOD_WLAN_CLI_V1.0: FCS_CKM.2/WLAN Cryptographic Key
Distribution (Group Temporal Key for WLAN)

PP_MDF_V3.3: FCS_CKM_EXT.1 Cryptographic Key Support

PP_MDF_V3.3: FCS_CKM_EXT.2 Cryptographic Key Random
Generation

PP_MDF_V3.3: FCS_CKM_EXT.3 Cryptographic Key Generation

PP_MDF_V3.3: FCS_CKM_EXT.4 Key Destruction

PP_MDF_V3.3: FCS_CKM_EXT.5 TSF Wipe

PP_MDF_V3.3: FCS_CKM_EXT.6 Salt Generation

MOD_BT_V1.0: FCS_CKM_EXT.8 Bluetooth Key Generation

PP_MDF_V3.3: FCS_COP.1/ENCRYPT Cryptographic Operation

PP_MDF_V3.3: FCS_COP.1/HASH Cryptographic Operation

PP_MDF_V3.3: FCS_COP.1/SIGN Cryptographic Operation

PP_MDF_V3.3: FCS_COP.1/KEYHMAC Cryptographic Operation

PP_MDF_V3.3: FCS_COP.1/CONDITION Cryptographic Operation

PP_MDF_V3.3: FCS_HTTPS_EXT.1 HTTPS Protocol

PP_MDF_V3.3: FCS_IV_EXT.1 Initialization Vector Generation

PP_MDF_V3.3: FCS_RBG_EXT.1 Random Bit Generation

PP_MDF_V3.3: FCS_SRV_EXT.1 Cryptographic Algorithm Services

PP_MDF_V3.3: FCS_STG_EXT.1 Cryptographic Key Storage

PP_MDF_V3.3: FCS_STG_EXT.2 Encrypted Cryptographic Key
Storage

PP_MDF_V3.3: FCS_STG_EXT.3 Integrity of Encrypted Key
Storage

 22

TLS_PKG_V1.1: TLS_PKG_V1.1: FCS_TLS_EXT.1 TLS Protocol

TLS_PKG_V1.1: FCS_TLSC_EXT.1 TLS Client Protocol

MOD_WLAN_CLI_V1.0: FCS_TLSC_EXT.1/WLAN TLS Client Protocol
(EAP-TLS for WLAN)

MOD_WLAN_CLI_V1.0: FCS_WPA_EXT.1 Supported WPA Versions

MOD_WLAN_CLI_V1.0: FCS_TLSC_EXT.2.1 TLS Client Support for
Supported Groups Extension (EAP-TLS for WLAN)

TLS_PKG_V1.1: FCS_TLSC_EXT.2 TLS Client Support for Mutual
Authentication

TLS_PKG_V1.1: FCS_TLSC_EXT.4 TLS Client Support for
Renegotiation

TLS_PKG_V1.1: FCS_TLSC_EXT.5 TLS Client Support for
Supported Groups Extension

FDP: User data protection PP_MDF_V3.3: FDP_ACF_EXT.1 Access Control for System
Services

PP_MDF_V3.3: FDP_ACF_EXT.2 Access Control for System
Resources

PP_MDF_V3.3: FDP_DAR_EXT.1 Protected Data Encryption

PP_MDF_V3.3: FDP_DAR_EXT.2 Sensitive Data Encryption

PP_MDF_V3.3: FDP_IFC_EXT.1 Subset Information Flow Control

PP_MDF_V3.3: FDP_STG_EXT.1 User Data Storage

PP_MDF_V3.3: FDP_UPC_EXT.1/APPS Inter-TSF User Data Transfer
Protection (Applications)

FIA: Identification and
authentication

PP_MDF_V3.3: FIA_AFL_EXT.1 Authentication Failure Handling

MOD_BT_V1.0: FIA_BLT_EXT.1 Bluetooth User Authorization

MOD_BT_V1.0: FIA_BLT_EXT.2 Bluetooth Mutual Authentication

MOD_BT_V1.0: FIA_BLT_EXT.3 Rejection of Duplicate Bluetooth
Connections

MOD_BT_V1.0: FIA_BLT_EXT.4 Secure Simple Pairing

MOD_BT_V1.0: FIA_BLT_EXT.6 Trusted Bluetooth Device User
Authorization

MOD_BT_V1.0: FIA_BLT_EXT.7 Untrusted Bluetooth Device User
Authorization

 23

MOD_WLAN_CLI_V1.0: FIA_PAE_EXT.1 Port Access Entity
Authentication

PP_MDF_V3.3: FIA_PMG_EXT.1 Password Management

PP_MDF_V3.3: FIA_TRT_EXT.1 Authentication Throttling

PP_MDF_V3.3: FIA_UAU.5 Multiple Authentication Mechanisms

PP_MDF_V3.3: FIA_UAU.6/CREDENTIAL

PP_MDF_V3.3: FIA_UAU.6/LOCKED

PP_MDF_V3.3: FIA_UAU.7 Protected Authentication Feedback

PP_MDF_V3.3: FIA_UAU_EXT.1 Authentication for Cryptographic
Operation

PP_MDF_V3.3: FIA_UAU_EXT.2 Timing of Authentication

PP_MDF_V3.3: FIA_X509_EXT.1 X.509 Validation of Certificates

PP_MDF_V3.3: FIA_X509_EXT.2 X.509 Certificate Authentication

MOD_WLAN_CLI_V1.0: FIA_X509_EXT.1/WLAN X.509 Certificate
Validation

MOD_WLAN_CLI_V1.0: FIA_X509_EXT.2/WLAN X.509 Certificate
Authentication (EAP-TLS for WLAN)

MOD_WLAN_CLI_V1.0: FIA_X509_EXT.6 X.509 Certificate Storage
and Management

PP_MDF_V3.3: FIA_X509_EXT.3 Request Validation of Certificates

FMT: Security management PP_MDF_V3.3: FMT_MOF_EXT.1 Management of Security
Functions Behavior

PP_MDF_V3.3: FMT_SMF.1 Specification of Management
Functions

MOD_BT_V1.0: FMT_SMF_EXT.1/BT Specification of Management
Functions

MOD_WLAN_CLI_V1.0: FMT_SMF.1/WLAN Specification of
Management Functions (WLAN Client)

PP_MDF_V3.3: FMT_SMF_EXT.2 Specification of Remediation
Actions

FPT: Protection of the TSF PP_MDF_V3.3: FPT_AEX_EXT.1 Application Address Space Layout
Randomization

PP_MDF_V3.3: FPT_AEX_EXT.2 Memory Page Permissions

PP_MDF_V3.3: FPT_AEX_EXT.3 Stack Overflow Protection

 24

PP_MDF_V3.3: FPT_AEX_EXT.4 Domain Isolation

PP_MDF_V3.3: FPT_JTA_EXT.1 JTAG Disablement

PP_MDF_V3.3: FPT_KST_EXT.1 Key Storage

PP_MDF_V3.3: FPT_KST_EXT.2 No Key Transmission

PP_MDF_V3.3: FPT_KST_EXT.3 No Plaintext Key Export

PP_MDF_V3.3: FPT_NOT_EXT.1 Self-Test Notification

PP_MDF_V3.3: FPT_STM.1 Reliable Time Stamps

PP_MDF_V3.3: FPT_TST_EXT.1 TSF Cryptographic Functionality
Testing

PP_MDF_V3.3: FPT_TST_EXT.2/PREKERNEL TSF Integrity Checking
(Pre-Kernel)

MOD_WLAN_CLI_V1.0: FPT_TST_EXT.3/WLAN TSF Cryptographic
Functionality Testing (WLAN Client)

PP_MDF_V3.3: FPT_TUD_EXT.1 Trusted Update: TSF Version
Query

PP_MDF_V3.3: FPT_TUD_EXT.2 TSF Update Verification

PP_MDF_V3.3: FPT_TUD_EXT.3 Application Signing

FTA: TOE access PP_MDF_V3.3: FTA_SSL_EXT.1 TSF- and User-initiated Locked
State

PP_MDF_V3.3: FTA_TAB.1 Default TOE Access Banners

MOD_WLAN_CLI_V1.0: FTA_WSE_EXT.1 Wireless Network Access

FTP: Trusted path/channels MOD_BT_V1.0: FTP_BLT_EXT.1 Bluetooth Encryption

MOD_BT_V1.0: FTP_BLT_EXT.2 Persistence of Bluetooth
Encryption

MOD_BT_V1.0: FTP_BLT_EXT.3/BR Bluetooth Encryption
Parameters

MOD_BT_V1.0: FTP_BLT_EXT.3/LE Bluetooth Encryption
Parameters

PP_MDF_V3.3: FTP_ITC_EXT.1 Trusted Channel Communication

MOD_WLAN_CLI_V1.0: FTP_ITC.1/WLAN Trusted Channel
Communication (Wireless LAN)

 25

6.1.1 Security Audit (FAU)

6.1.1.1 Audit Data Generation (FAU_GEN.1)
PP_MDF_V3.3: FAU_GEN.1.1

The TSF shall be able to generate an audit record of the following auditable events:
1. Start-up and shutdown of the audit functions
2. All auditable events for the [not selected] level of audit
3. [All administrative actions
4. Start-up and shutdown of the OS
5. Insertion or removal of removable media
6. Specifically defined auditable events in Table 5
7. [no additional auditable events]] (TD0724 applied.)

PP_MDF_V3.3: FAU_GEN.1.2
The TSF shall record within each audit record at least the following information:
1. Date and time of the event
2. Type of event
3. Subject identity
4. The outcome (success or failure) of the event
5. Additional information in Table 5
6. [no additional information]

Note: FAU_GEN.1/BT has been merged into FAU_GEN.1 and Table 5 combined all the mandatory
auditable events specified in PP_MDF_V3.3, Bluetooth PP Module and WLAN Client PP Module.

6.1.1.2 Audit Data Generation (Wireless LAN) (FAU_GEN.1/WLAN)
MOD_WLAN_CLI_V1.0: FAU_GEN.1.1/WLAN

The TSF shall [invoke platform-provided functionality] to generate an audit record of
the following auditable events:
a. Startup and shutdown of the audit functions;
b. All auditable events for [not specified] level of audit; and
c. [all auditable events for mandatory SFRs specified in Table 5 and selected
SFRs in Table 5].

MOD_WLAN_CLI_V1.0: FAU_GEN.1.2/WLAN
The [TSF] shall record within each audit record at least the following information:
a. Date and time of the event, type of event, subject identity, (if relevant) the outcome
(success or failure) of the event; and
b. For each audit event type, based on the auditable event definitions of the functional
components included in the PP-Module/ST, [Additional Audit Record Contents as
specified in Table 5]

Table 5: Mandatory Auditable Events

Requirement Auditable Events Additional Audit Record
Contents

 26

FAU_GEN.1 No events specified N/A

FAU_GEN.1/WLAN No events specified N/A

FAU_SAR.1 No events specified N/A

FAU_STG.1 No events specified N/A

FAU_STG.4 No events specified N/A

FCS_CKM.1 [None]. No additional information.

FCS_CKM.1/WPA No events specified N/A

FCS_CKM.2/UNLOCKED No events specified N/A

FCS_CKM.2/LOCKED No events specified N/A

FCS_CKM.2/WLAN No events specified N/A

FCS_CKM_EXT.1 [None]. No additional information.

FCS_CKM_EXT.2 No events specified N/A

FCS_CKM_EXT.3 No events specified N/A

FCS_CKM_EXT.4 No events specified N/A

FCS_CKM_EXT.5 [None]. No additional information.

FCS_CKM_EXT.6 No events specified N/A

FCS_CKM_EXT.8 No events specified N/A

FCS_COP.1/ENCRYPT No events specified N/A

FCS_COP.1/HASH No events specified N/A

FCS_COP.1/SIGN No events specified N/A

FCS_COP.1/KEYHMAC No events specified N/A

FCS_COP.1/CONDITION No events specified N/A

FCS_IV_EXT.1 No events specified N/A

FCS_SRV_EXT.1 No events specified N/A

FCS_STG_EXT.1 Import or destruction of key. Identity of key, role and
identity of requester.

[None] Identity of key, role and
identity of requester.

FCS_STG_EXT.2 No events specified N/A

 27

FCS_STG_EXT.3 Failure to verify integrity of
stored key. Identity of key being verified.

FCS_TLSC_EXT.1/WLAN Failure to establish an EAP-TLS
session.

Reason for failure.
Non-TOE endpoint of
connection.

Establishment/termination of
an EAP-TLS session.

Non-TOE endpoint of
connection.

FCS_TLSC_EXT.2/WLAN No events specified N/A

FCS_WPA_EXT.1 No events specified N/A

FDP_DAR_EXT.1 [None] No additional information.

FDP_DAR_EXT.2 [Failure to encrypt/decrypt
data] No additional information

FDP_IFC_EXT.1 No events specified N/A

FDP_STG_EXT.1 Addition or removal of
certificate from Trust Anchor
Database.

Subject name of certificate.

FIA_BLT_EXT.1 Failed user authorization of
Bluetooth device.

User authorization decision
(e.g., user rejected
connection, incorrect pin
entry).

Failed user authorization for
local Bluetooth Service.

Bluetooth address and name
of device. Bluetooth profile.
Identity of local service with
[service ID].

FIA_BLT_EXT.2 Initiation of Bluetooth
connection.

Bluetooth address and name
of device.

Failure of Bluetooth
connection.

Reason for failure.

FIA_BLT_EXT.4 No events specified N/A

FIA_BLT_EXT.6 No events specified N/A

FIA_BLT_EXT.7 No events specified N/A

FIA_PAE_EXT.1 No events specified N/A

FIA_PMG_EXT.1 No events specified N/A

FIA_TRT_EXT.1 No events specified N/A

FIA_UAU.5 No events specified N/A

FIA_UAU.7 No events specified N/A

 28

FIA_UAU_EXT.1 No events specified N/A

FIA_X509_EXT.1 Failure to validate X.509v3
certificate.

Reason for failure of
validation.

FIA_X509_EXT.1/WLAN Failure to validate X.509v3
certificate.

Reason for failure of
validation.

FIA_X509_EXT.2/WLAN No events specified N/A

FIA_X509_EXT.6 Attempts to load certificates. None

Attempts to revoke
certificates. None

FMT_MOF_EXT.1 No events specified N/A

FMT_SMF.1/WLAN No events specified N/A

FPT_AEX_EXT.1 No events specified N/A

FPT_AEX_EXT.2 No events specified N/A

FPT_AEX_EXT.3 No events specified N/A

FPT_JTA_EXT.1 No events specified N/A

FPT_KST_EXT.1 No events specified N/A

FPT_KST_EXT.2 No events specified N/A

FPT_KST_EXT.3 No events specified N/A

FPT_NOT_EXT.1 [None]. [No additional
information].

FPT_STM.1 No events specified N/A

FPT_TST_EXT.1 Initiation of self-test No additional information

Failure of self-test. [No additional information]

FPT_TST_EXT.2/PREKERNEL Start-up of TOE. No additional information

[None] [No additional information]

FPT_TST_EXT.3/WLAN Execution of this set of TSF
self-tests. None

[None] [None]

FPT_TUD_EXT.1 No events specified N/A

FTA_SSL_EXT.1 No events specified N/A

 29

FTA_TAB.1 No events specified N/A

FTA_WSE_EXT.1 All attempts to connect to
access points.

For each access point record
the [Certificate Check
Message and the last [6]
octets] of the MAC Address
Success and failures
(including reason for failure).

FTP_BLT_EXT.1 No events specified N/A

FTP_BLT_EXT.2 No events specified N/A

FTP_BLT_EXT.3/BR No events specified N/A
FTP_BLT_EXT.3/LE
(if claimed)

No events specified N/A

FTP_ITC.1/WLAN All attempts to establish a
trusted channel.

Identification of the non-TOE
endpoint of the channel.

6.1.1.3 Audit Review (FAU_SAR.1)
PP_MDF_V3.3: FAU_SAR.1.1

The TSF shall provide [the administrator] with the capability to read [all audited events
and record contents] from the audit records.

PP_MDF_V3.3: FAU_SAR.1.2
The TSF shall provide the audit records in a manner suitable for the user to interpret
the information.

6.1.1.4 Audit Storage Protection (FAU_STG.1)
PP_MDF_V3.3: FAU_STG.1.1

The TSF shall protect the stored audit records in the audit trail from unauthorized
deletion.

PP_MDF_V3.3: FAU_STG.1.2
The TSF shall be able to [prevent] unauthorized modifications to the stored audit
records in the audit trail.

6.1.1.5 Prevention of Audit Data Loss (FAU_STG.4)
PP_MDF_V3.3: FAU_STG.4.1

The TSF shall [overwrite the oldest stored audit records] and [assignment: other
actions to be taken in case of audit storage failure] if the audit trail is full.

6.1.2 Cryptographic support (FCS)

6.1.2.1 Cryptographic key generation (FCS_CKM.1)
PP_MDF_V3.3: FCS_CKM.1.1

The TSF shall generate asymmetric cryptographic keys in accordance with a specified
cryptographic key generation algorithm [
- RSA schemes using cryptographic key sizes of [2048-bit or greater] that

meet [FIPS PUB 186-4, "Digital Signature Standard (DSS)", Appendix B.3]

 30

- ECC schemes using [
o “NIST curves” P-384 and [P-256, P-521] that meet the following:

[FIPS PUB 186-4, "Digital Signature Standard (DSS)", Appendix
B.4]

]
].

6.1.2.2 Cryptographic Key Generation (Symmetric Keys for
WPA2/WPA3 Connections) (FCS_CKM.1/WPA)

MOD_WLAN_CLI_V1.0: FCS_CKM.1.1/WPA
The TSF shall generate symmetric cryptographic keys in accordance with a specified
cryptographic key generation algorithm [PRF-384 and [PRF-704] (as defined in
IEEE 802.11-2012)] and specified cryptographic key sizes [256 bits and [128 bits]
using a Random Bit Generator as specified in FCS_RBG_EXT.1.

6.1.2.3 Cryptographic key establishment (FCS_CKM.2/UNLOCKED)
PP_MDF_V3.3: FCS_CKM.2.1/UNLOCKED

The TSF shall perform cryptographic key establishment in accordance with a
specified cryptographic key establishment method [
- [RSA-based key establishment schemes] that meet the following [

o NIST Special Publication 800-56B, “Recommendation for Pair- Wise
Key Establishment Schemes Using Integer Factorization
Cryptography”

]
- [Elliptic curve-based key establishment schemes] that meets the

following: [NIST Special Publication 800-56A Revision 3,
"Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography"]

].

6.1.2.4 Cryptographic key establishment (FCS_CKM.2/LOCKED)
PP_MDF_V3.3: FCS_CKM.2.1/LOCKED

The TSF shall perform cryptographic key establishment in accordance with a
specified cryptographic key establishment method: [
- [RSA-based key establishment schemes] that meet the following: [NIST

Special Publication 800-56B, “Recommendation for Pair-Wise Key
Establishment Schemes Using Integer Factorization Cryptography”]

] for the purposes of encrypting sensitive data received while the device is locked.

6.1.2.5 Cryptographic Key Distribution (Group Temporal Key for
WLAN) (FCS_CKM.2/WLAN)

MOD_WLAN_CLI_V1.0: FCS_CKM.2.1/WLAN
The TSF shall decrypt Group Temporal Key in accordance with a specified
cryptographic key distribution method [AES Key Wrap (as defined in RFC 3394) in an
EAPOL-Key frame (as defined in IEEE 802.11-2012 for the packet format and timing
considerations] and does not expose the cryptographic keys.

 31

6.1.2.6 Extended: Cryptographic Key Support (FCS_CKM_EXT.1)
PP_MDF_V3.3: FCS_CKM_EXT.1.1

The TSF shall support [immutable hardware] REK(s) with a [symmetric] key of
strength [256 bits].

PP_MDF_V3.3: FCS_CKM_EXT.1.2
Each REK shall be hardware-isolated from the OS on the TSF in runtime.

PP_MDF_V3.3: FCS_CKM_EXT.1.3
Each REK shall be generated by a RBG in accordance with FCS_RBG_EXT.1.

6.1.2.7 Extended: Cryptographic Key Random Generation
(FCS_CKM_EXT.2)

PP_MDF_V3.3: FCS_CKM_EXT.2.1
All DEKs shall be [randomly generated] with entropy corresponding to the security
strength of AES key sizes of [256] bits.

6.1.2.8 Extended: Cryptographic Key Generation
(FCS_CKM_EXT.3)

PP_MDF_V3.3: FCS_CKM_EXT.3.1
The TSF shall use [
- asymmetric KEKs of [112 bits] security strength,
- symmetric KEKs of [256-bit] security strength corresponding to at least

the security strength of the keys encrypted by the KEK
].

PP_MDF_V3.3: FCS_CKM_EXT.3.2
The TSF shall generate all KEKs using one of the following methods:

• Derive the KEK from a Password Authentication Factor according to
FCS_COP.1.1/CONDITION and

[
• Generate the KEK using an RBG that meets this profile (as specified in

FCS_RBG_EXT.1),
• Generate the KEK using a key generation scheme that meets this profile (as

specified in FCS_CKM.1),
• Combine the KEK from other KEKs in a way that preserves the effective

entropy of each factor by [concatenating the keys and using a KDF (as
described in SP 800-108), encrypting one key with another]
].

6.1.2.9 Extended: Key Destruction (FCS_CKM_EXT.4)
PP_MDF_V3.3: FCS_CKM_EXT.4.1

The TSF shall destroy cryptographic keys in accordance with the specified
cryptographic key destruction methods:

• by clearing the KEK encrypting the target key
• in accordance with the following rules

o For volatile memory, the destruction shall be executed by a single direct
overwrite [consisting of zeroes].

o For non-volatile EEPROM, the destruction shall be executed by a single
direct overwrite consisting of a pseudo random pattern using the TSF’s
RBG (as specified in FCS_RBG_EXT.1), followed by a read-verify.

o For non-volatile flash memory, that is not wear-leveled, the destruction
shall be executed [by a block erase that erases the reference to
memory that stores data as well as the data itself].

 32

o For non-volatile flash memory, that is wear-leveled, the destruction shall
be executed [by a block erase].

o For non-volatile memory other than EEPROM and flash, the destruction
shall be executed by a single direct overwrite with a random pattern that is
changed before each write.

PP_MDF_V3.3: FCS_CKM_EXT.4.2
The TSF shall destroy all plaintext keying material and critical security parameters
when no longer needed.

6.1.2.10 Extended: TSF Wipe (FCS_CKM_EXT.5)
PP_MDF_V3.3: FCS_CKM_EXT.5.1

The TSF shall wipe all protected data by [
- Cryptographically erasing the encrypted DEKs and/or the KEKs in non-

volatile memory by following the requirements in FCS_CKM_EXT.4.1,
- Overwriting all PD according to the following rules:

o For EEPROM, the destruction shall be executed by a single direct
overwrite consisting of a pseudo random pattern using the TSF’s
RBG (as specified in FCS_RBG_EXT.1, followed by a read-verify.

o For flash memory, that is not wear-leveled, the destruction shall
be executed [by a block erase that erases the reference to
memory that stores data as well as the data itself].

o For flash memory, that is wear-leveled, the destruction shall be
executed [by a block erase].

o For non-volatile memory other than EEPROM and flash, the
destruction shall be executed by a single direct overwrite with a
random pattern that is changed before each write.

].
PP_MDF_V3.3: FCS_CKM_EXT.5.2

The TSF shall perform a power cycle on conclusion of the wipe procedure.

6.1.2.11 Extended: Salt Generation (FCS_CKM_EXT.6)
PP_MDF_V3.3: FCS_CKM_EXT.6.1

The TSF shall generate all salts using a RBG that meets FCS_RBG_EXT.1.

6.1.2.12 Extended: Bluetooth Key Generation (FCS_CKM_EXT.8)
MOD_BT_V1.0: FCS_CKM_EXT.8.1

The TSF shall generate public/private ECDH key pairs every [paring].

6.1.2.13 Cryptographic operation (FCS_COP.1/ENCRYPT)
PP_MDF_V3.3: FCS_COP.1.1/ENCRYPT

The TSF shall perform [encryption/decryption] in accordance with a specified
cryptographic algorithm: [

• AES-CBC (as defined in FIPS PUB 197, and NIST SP 800-38A) mode
• AES-CCMP (as defined in FIPS PUB 197, NIST SP 800-38C and IEEE 802.11-2012),

and
• [

o AES Key Wrap (KW) (as defined in NIST SP 800-38F),
o AES-GCM (as defined in NIST SP 800-38D),
o AES-XTS (as defined in NIST SP 800-38E) mode
o AES-GCMP-256 (as defined in NIST SP800-38D and IEEE 802.11ac-

2013)
]

] and cryptographic key sizes [128-bit key sizes and [256-bit key sizes]].

 33

6.1.2.14 Cryptographic operation (FCS_COP.1/HASH)
PP_MDF_V3.3: FCS_COP.1.1/HASH

The TSF shall perform [cryptographic hashing] in accordance with a specified
cryptographic algorithm [SHA-1 and [SHA-256,SHA-384, SHA-512]] and message
digest sizes [160 and [256, 384, 512 bits]]that meet the following: [FIPS Pub 180-4].

6.1.2.15 Cryptographic operation (FCS_COP.1/SIGN)
PP_MDF_V3.3: FCS_COP.1.1/SIGN

The TSF shall perform [cryptographic signature services (generation and verification)]
in accordance with a specified cryptographic algorithm [

§ [RSA schemes] using cryptographic key sizes of [2048-bit or greater]
that meet the following: [FIPS PUB 186-4, "Digital Signature
Standard (DSS)", Section 4]

§ [ECDSA schemes] using [“NIST curve” P-384 and [P-256]] that meet
the following: [FIPS PUB 186-4, 'Digital Signature Standard (DSS)',
Section 5]

].

6.1.2.16 Cryptographic operation (FCS_COP.1/KEYHMAC)
PP_MDF_V3.3: FCS_COP.1.1/KEYHMAC

The TSF shall perform [keyed-hash message authentication] in accordance with a
specified cryptographic algorithm [HMAC-SHA-1 and [HMAC-SHA-256, HMAC-SHA-
384, HMAC-SHA-512]] and cryptographic key sizes [160, 256, 384, 512 bits] and
message digest sizes 160 and [256, 384, 512] bits that meet the following: [FIPS
Pub 198-1, "The Keyed-Hash Message Authentication Code", and FIPS Pub 180-4,
"Secure Hash Standard"].

6.1.2.17 Cryptographic operation (FCS_COP.1/CONDITION)
PP_MDF_V3.3: FCS_COP.1.1/CONDITION

The TSF shall perform conditioning in accordance with a specified cryptographic
algorithm HMAC-[SHA-256] using a salt, and [key stretching with scrypt] and
output cryptographic key sizes [256] that meet the following: [no standard].

6.1.2.18 Extended: HTTPS Protocol (FCS_HTTPS_EXT.1)
PP_MDF_V3.3: FCS_HTTPS_EXT.1.1

The TSF shall implement the HTTPS protocol that complies with RFC 2818.
PP_MDF_V3.3: FCS_HTTPS_EXT.1.2

The TSF shall implement HTTPS using TLS as defined in [the Functional Package for
Transport Layer Security (TLS), version 1.1].

PP_MDF_V3.3: FCS_HTTPS_EXT.1.3
The TSF shall notify the application and [not establish the connection] if the peer
certificate is deemed invalid.

6.1.2.19 Extended: Initialization Vector Generation (FCS_IV_EXT.1)
PP_MDF_V3.3: FCS_IV_EXT.1.1

The TSF shall generate IVs in accordance with [Table 11 in PP_MDF_V3.3: References
and IV Requirements for NIST-approved Cipher Modes].

6.1.2.20 Extended: Random Bit Generation (FCS_RBG_EXT.1)
PP_MDF_V3.3: FCS_RBG_EXT.1.1

The TSF shall perform all deterministic random bit generation services in accordance

 34

with NIST Special Publication 800-90A using [Hash_DRBG (any), CTR_DRBG (AES)].
(TD0677 applied.)

PP_MDF_V3.3: FCS_RBG_EXT.1.2
The deterministic RBG shall be seeded by an entropy source that accumulates entropy
from [TSF-hardware-based noise source] with a minimum of [256 bits] of entropy
at least equal to the greatest security strength (according to NIST SP 800-57) of the
keys and hashes that it will generate.

PP_MDF_V3.3: FCS_RBG_EXT.1.3
The TSF shall be capable of providing output of the RBG to applications running on the
TSF that request random bits.

6.1.2.21 Extended: Cryptographic Algorithm Services
(FCS_SRV_EXT.1)

PP_MDF_V3.3: FCS_SRV_EXT.1.1
The TSF shall provide a mechanism for applications to request the TSF to perform the
following cryptographic operations: [

- All mandatory and [selected algorithms] in FCS_CKM.2/LOCKED
- The following algorithms in FCS_COP.1/ENCRYPT: AES-CBC, [AES-GCM]
- All selected algorithms in FCS_COP.1/SIGN
- All mandatory and selected algorithms in FCS_COP.1/HASH
- All mandatory and selected algorithms in FCS_COP.1/KEYHMAC
- [

o All mandatory and [selected algorithms] in FCS_CKM.1
]

].

6.1.2.22 Extended: Cryptographic Key Storage (FCS_STG_EXT.1)
PP_MDF_V3.3: FCS_STG_EXT.1.1

The TSF shall provide [software-based] secure key storage for asymmetric private
keys and [symmetric keys].

PP_MDF_V3.3: FCS_STG_EXT.1.2
The TSF shall be capable of importing keys or secrets into the secure key storage upon
request of [the user, the administrator] and [applications running on the TSF].

PP_MDF_V3.3: FCS_STG_EXT.1.3
The TSF shall be capable of destroying keys or secrets in the secure key storage upon
request of [the user, the administrator].

PP_MDF_V3.3: FCS_STG_EXT.1.4
The TSF shall have the capability to allow only the application that imported the
key/secret the use of the key or secret. Exceptions may only be explicitly authorized by
[a common application developer].

PP_MDF_V3.3: FCS_STG_EXT.1.5
The TSF shall allow only the application that imported the key/secret to request that
the key or secret be destroyed. Exceptions may only be explicitly authorized by [a
common application developer].

6.1.2.23 Extended: Encrypted Cryptographic Key Storage
(FCS_STG_EXT.2)

PP_MDF_V3.3: FCS_STG_EXT.2.1
The TSF shall encrypt all DEKs, KEKs and [all software-based key storage] by KEKs
that are [

o Protected by the REK with [
o encryption by a KEK chaining from a REK
o encryption by a KEK that is derived from a REK

 35

]
o Protected by the REK and the password with [

o encryption by a KEK chaining to a REK and the password-
derived or biometric-unlocked KEK

o encryption by a KEK that is derived from a REK and the
password-derived or biometric-unlocked KEK

]
].

PP_MDF_V3.3: FCS_STG_EXT.2.2
DEKs, KEKs and [all software-based key storage] shall be encrypted using one of
the following methods: [

• using a SP800-56B key establishment scheme
• using AES in the [GCM]
].

6.1.2.24 Extended: Integrity of encrypted key storage
(FCS_STG_EXT.3)

PP_MDF_V3.3: FCS_STG_EXT.3.1
The TSF shall protect the integrity of any encrypted DEKs and KEKs and [no other
keys] by [

• [GCM] cipher mode for encryption according to FCS_STG_EXT.2
].

PP_MDF_V3.3: FCS_STG_EXT.3.2
The TSF shall verify the integrity of the [MAC] of the stored key prior to use of the key.

6.1.2.25 Extended: TLS Protocol (FCS_TLS_EXT.1)
TLS_PKG_V1.1: FCS_TLS_EXT.1.1

The product shall implement [

• TLS as a client
]

6.1.2.26 Extended: TLS Client Protocol (FCS_TLSC_EXT.1)
TLS_PKG_V1.1: FCS_TLSC_EXT.1.1

The product shall implement TLS 1.2 (RFC 5246) and [TLS 1.1 (RFC 4346), no
earlier TLS versions] as a client that supports the cipher suites: [

• TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246,
• TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,
• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC

5289,
• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC

5289,
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

] and also supports functionality for [

• mutual authentication,
• session renegotiation]. (TD0442 applied.)

TLS_PKG_V1.1: FCS_TLSC_EXT.1.2
The product shall verify that the presented identifier matches the reference identifier
according to RFC 6125. (TD0499 applied.)

TLS_PKG_V1.1: FCS_TLSC_EXT.1.3
The product shall not establish a trusted channel if the server certificate is invalid [

 36

• with no exceptions,
]. (TD0513 applied.)

6.1.2.27 Extended: TLS Client Protocol (EAP-TLS for WLAN)
(FCS_TLSC_EXT.1/WLAN)

MOD_WLAN_CLI_V1.0: FCS_TLSC_EXT.1.1/WLAN
The TSF shall implement TLS 1.2 (RFC 5246) and [TLS 1.1 (RFC 4346), no other TLS
version] in support of the EAP-TLS protocol as specified in RFC 5216 supporting the
following ciphersuites:
[TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289].

MOD_WLAN_CLI_V1.0: FCS_TLSC_EXT.1.2/WLAN
The TSF shall generate random values used in the EAP-TLS exchange using the RBG
specified in FCS_RBG_EXT.1.

MOD_WLAN_CLI_V1.0: FCS_TLSC_EXT.1.3/WLAN
The TSF shall use X509 v3 certificates as specified in FIA_X509_EXT.1/WLAN.

MOD_WLAN_CLI_V1.0: FCS_TLSC_EXT.1.4/WLAN
The TSF shall verify that the server certificate presented includes the Server
Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the extendedKeyUsage
field.

MOD_WLAN_CLI_V1.0: FCS_TLSC_EXT.1.5/WLAN
The TSF shall allow an authorized administrator to configure the list of CAs that are
allowed to sign authentication server certificates that are accepted by the TOE

6.1.2.28 Extended: TLS Client Support for Mutual Authentication
(FCS_TLSC_EXT.2)

TLS_PKG_V1.1: FCS_TLSC_EXT.2.1
The product shall support mutual authentication using X.509v3 certificates.

6.1.2.29 Extended: TLS Client Support for Supported Groups
Extension (EAP-TLS for WLAN) (FCS_TLSC_EXT.2/WLAN)

MOD_WLAN_CLI_V1.0: FCS_TLSC_EXT.2.1/WLAN
The TSF shall present the Supported Groups extension in the Client Hello with the
following NIST curves: [secp256r1, secp384r1].

6.1.2.30 Extended: TLS Client Support for Renegotiation
(FCS_TLSC_EXT.4)

TLS_PKG_V1.1: FCS_TLSC_EXT.4.1
The product shall support secure renegotiation through use of the “renegotiation_info”
TLS extension in accordance with RFC 5746.

6.1.2.31 Extended: TLS Client Support for Supported Groups
Extension (FCS_TLSC_EXT.5)

TLS_PKG_V1.1: FCS_TLSC_EXT.5.1
The product shall present the Supported Groups Extension in the Client Hello with the
supported groups [

 37

• secp256r1,
• secp384r1,

].

6.1.2.32 Extended: Supported WPA Versions (FCS_WPA_EXT.1)
MOD_WLAN_CLI_V1.0: FCS_WPA_EXT.1.1

The TSF shall support WPA3 and [WPA2] security type.

6.1.3 User data protection (FDP)

6.1.3.1 Extended: Access Control for System Services
(FDP_ACF_EXT.1)

PP_MDF_V3.3: FDP_ACF_EXT.1.1
The TSF shall provide a mechanism to restrict the system services that are accessible
to an application.

PP_MDF_V3.3: FDP_ACF_EXT.1.2
The TSF shall provide an access control policy that prevents [application, groups of
applications] from accessing [all] data stored by other [application, groups of
applications]. Exceptions may only be explicitly authorized for such sharing by [a
common application developer (for sharing between applications), no one
(for sharing between personal and enterprise profiles)].

6.1.3.2 Extended: Access Control for System Resources
(FDP_ACF_EXT.2)

PP_MDF_V3.3: FDP_ACF_EXT.2.1
The TSF shall provide a separate [address book, calendar, keychain] for each
application group and only allow applications within that process group to access the
resource. Exceptions may only be explicitly authorized for such sharing by [the
administrator (for address book), no one (for calendar, keychain)].

6.1.3.3 Extended: Protected Data Encryption (FDP_DAR_EXT.1)
PP_MDF_V3.3: FDP_DAR_EXT.1.1

Encryption shall cover all protected data.
PP_MDF_V3.3: FDP_DAR_EXT.1.2

Encryption shall be performed using DEKs with AES in the [XTS] mode with key size
[256] bits.

6.1.3.4 Extended: Sensitive Data Encryption (FDP_DAR_EXT.2)
PP_MDF_V3.3: FDP_DAR_EXT.2.1

The TSF shall provide a mechanism for applications to mark data and keys as sensitive.
PP_MDF_V3.3: FDP_DAR_EXT.2.2

The TSF shall use an asymmetric key scheme to encrypt and store sensitive data
received while the product is locked.

PP_MDF_V3.3: FDP_DAR_EXT.2.3
The TSF shall encrypt any stored symmetric key and any stored private key of the
asymmetric key(s) used for the protection of sensitive data according to
[FCS_STG_EXT.2.1 selection 2].

PP_MDF_V3.3: FDP_DAR_EXT.2.4

 38

The TSF shall decrypt the sensitive data that was received while in the locked state
upon transitioning to the unlocked state using the asymmetric key scheme and shall
re-encrypt that sensitive data using the symmetric key scheme.

6.1.3.5 Extended: Subset information flow control
(FDP_IFC_EXT.1)

PP_MDF_V3.3: FDP_IFC_EXT.1.1
The TSF shall [

• provide an interface which allows a VPN client to protect all IP traffic
using IPsec

] with the exception of IP traffic needed to manage the VPN connection, and
[traffic needed for correct functioning of the TOE], when the VPN is enabled.

6.1.3.6 Extended: User Data Storage (FDP_STG_EXT.1)
PP_MDF_V3.3: FDP_STG_EXT.1.1

The TSF shall provide protected storage for the Trust Anchor Database.

6.1.3.7 Extended: Inter-TSF user data transfer protection
(Applications) (FDP_UPC_EXT.1/APPS)

PP_MDF_V3.3: FDP_UPC_EXT.1.1/APPS
The TSF provide a means for non-TSF applications executing on the TOE to use [

• mutually authenticated TLS as defined in the Functional Package for Transport
Layer Security (TLS), version 1.1,

• HTTPS,
and [
• no other protocol
]] to provide a protected communication channel between the non-TSF application and
another IT product that is logically distinct from other communication channels,
provides assured identification of its end points, protects channel data from disclosure,
and detects modification of the channel data.

PP_MDF_V3.3: FDP_UPC_EXT.1.2/APPS
The TSF shall permit the non-TSF applications to initiate communication via the trusted
channel.

6.1.4 Identification and authentication (FIA)

6.1.4.1 Authentication failure handling (FIA_AFL_EXT.1)
PP_MDF_V3.3: FIA_AFL_EXT.1.1

The TSF shall consider password and [no other mechanism] as critical authentication
mechanisms.

PP_MDF_V3.3: FIA_AFL_EXT.1.2
The TSF shall detect when a configurable positive integer within [0 - 50] of [non-
unique] unsuccessful authentication attempts occur related to last successful
authentication for each authentication mechanism.

PP_MDF_V3.3: FIA_AFL_EXT.1.3
The TSF shall maintain the number of unsuccessful authentication attempts that have
occurred upon power off.

PP_MDF_V3.3: FIA_AFL_EXT.1.4
When the defined number of unsuccessful authentication attempts has exceeded the
maximum allowed for a given authentication mechanism, all future authentication
attempts will be limited to other available authentication mechanisms, unless the
given mechanism is designated as a critical authentication mechanism.

 39

PP_MDF_V3.3: FIA_AFL_EXT.1.5
When the defined number of unsuccessful authentication attempts for the last
available authentication mechanism or single critical authentication mechanism has
been surpassed, the TSF shall perform a wipe of all protected data.

PP_MDF_V3.3: FIA_AFL_EXT.1.6
The TSF shall increment the number of unsuccessful authentication attempts prior to
notifying the user that the authentication was unsuccessful.

6.1.4.2 Extended: Bluetooth User Authorization (FIA_BLT_EXT.1)
MOD_BT_V1.0: FIA_BLT_EXT.1.1

The TSF shall require explicit user authorization before pairing with a remote Bluetooth
device.

6.1.4.3 Extended: Bluetooth Mutual Authentication
(FIA_BLT_EXT.2)

MOD_BT_V1.0: FIA_BLT_EXT.2.1
The TSF shall require Bluetooth mutual authentication between devices prior to any
data transfer over the Bluetooth link.

6.1.4.4 Extended: Rejection of Duplicate Bluetooth Connections
(FIA_BLT_EXT.3)

MOD_BT_V1.0: FIA_BLT_EXT.3.1
The TSF shall discard pairing and session initialization attempts from a Bluetooth
device address (BD_ADDR) to which an active session already exists.

6.1.4.5 Extended: Secure Simple Pairing (FIA_BLT_EXT.4)
MOD_BT_V1.0: FIA_BLT_EXT.4.1

The TOE shall support Bluetooth Secure Simple Pairing, both in the host and the
controller.

MOD_BT_V1.0: FIA_BLT_EXT.4.2
The TOE shall support Secure Simple Pairing during the pairing process.

6.1.4.6 Extended: Trusted Bluetooth Device User Authorization
(FIA_BLT_EXT.6)

MOD_BT_V1.0: FIA_BLT_EXT.6.1
The TSF shall require explicit user authorization before granting trusted remote
devices access to services associated with the following Bluetooth profiles: [OPP,
MAP, PBAP, SAP].

6.1.4.7 Extended: Untrusted Bluetooth Device User Authorization
(FIA_BLT_EXT.7)

MOD_BT_V1.0: FIA_BLT_EXT.7.1
The TSF shall require explicit user authorization before granting untrusted remote
devices access to services associated with the following Bluetooth profiles: [OPP,
MAP, PBAP, SAP].

 40

6.1.4.8 Extended: Port Access Entity Authentication
(FIA_PAE_EXT.1)

MOD_WLAN_CLI_V1.0: FIA_PAE_EXT.1.1
The TSF shall conform to IEEE Standard 802.1X for a Port Access Entity (PAE) in the
“Supplicant” role.

6.1.4.9 Extended: Password Management (FIA_PMG_EXT.1)
PP_MDF_V3.3: FIA_PMG_EXT.1.1

The TSF shall support the following for the Password Authentication Factor:
1. Passwords shall be able to be composed of any combination of [upper and lower
case letters, numbers, and special characters: ["[", "]", "{","}", "_", "\", "|",
"~", "<", ">", "-", "/", ":", ";", "+", "=", "`", "?", """, "'", ",", ".", " "];

2. Password length up to [16] characters shall be supported.

6.1.4.10 Extended: Authentication Throttling (FIA_TRT_EXT.1)
PP_MDF_V3.3: FIA_TRT_EXT.1.1

The TSF shall limit automated user authentication attempts by [enforcing a delay
between incorrect authentication attempts] for all authentication mechanisms
selected in FIA_UAU.5.1. The minimum delay shall be such that no more than 10
attempts can be attempted per 500 milliseconds.

6.1.4.11 Multiple Authentication Mechanisms (FIA_UAU.5)
PP_MDF_V3.3: FIA_UAU.5.1

The TSF shall provide password and [no other mechanism] to support user
authentication.

PP_MDF_V3.3: FIA_UAU.5.2
The TSF shall authenticate any user's claimed identity according to the [
following rules:

- unlock the user's Credential encrypted (CE files) and keystore keys
To authenticate unlocking the device immediately after boot (first unlock
after reboot):

- User passwords are required after reboot to unlock the user's
Credential encrypted (CE files) and keystore keys.

To authenticate unlocking the device after device lock (not following a
reboot):

- The TOE verifies user credential (password) via the gatekeeper, which
compares the entered credential to a derived value or template.

To change protected settings or issue certain commands:
- The TOE requires password after a reboot, when changing settings

(Screen lock, Smart Lock settings, etc.), and when factory resetting.”
].

6.1.4.12 Re-Authentication (Credential Change)
(FIA_UAU.6/CREDENTIAL)

PP_MDF_V3.3: FIA_UAU.6.1/CREDENTIAL

 41

The TSF shall re-authenticate the user via the Password Authentication Factor
under the conditions [attempted change to any supported authentication
mechanisms].

6.1.4.13 Re-Authentication (TSF Lock) (FIA_UAU.6/LOCKED)
PP_MDF_V3.3: FIA_UAU.6.1/LOCKED

The TSF shall re-authenticate the user via an authentication factor defined in
FIA_UAU.5.1 under the conditions TSF-initiated lock, user-initiated lock, [no
other conditions].

6.1.4.14 Protected authentication feedback (FIA_UAU.7)
PP_MDF_V3.3: FIA_UAU.7.1

The TSF shall provide only [obscured feedback to the device’s display] to the user
while the authentication is in progress.

6.1.4.15 Extended: Authentication for Cryptographic Operation
(FIA_UAU_EXT.1)

PP_MDF_V3.3: FIA_UAU_EXT.1.1
The TSF shall require the user to present the Password Authentication Factor prior to
decryption of protected data and encrypted DEKs, KEKs and [all software-based key
storage] at startup.

6.1.4.16 Extended: Timing of Authentication (FIA_UAU_EXT.2)
PP_MDF_V3.3: FIA_UAU_EXT.2.1

The TSF shall allow [[
 - Take screen shots (stored internally)
 - Enter password to unlock
 - Make/receive emergency calls
 - Take pictures (stored internally) - unless the camera was disabled
 - Turn the TOE off
 - Restart the TOE
 - Enable Airplane mode
 - See notifications (note that some notifications identify actions, for example

to view a screenshot; however, selecting those notifications highlights the
password prompt and require the password to access that data)

 - Configure sound, vibrate, or mute
 - Set the volume (up and down) for ringtone
 - Access notification widgets (without authentication):
 o Flashlight toggle
 o Do not disturb toggle
 o Auto rotate toggle
 o Sound (on, mute, vibrate)
 o Night light filter toggle
 o Battery saving mode toggle
 o Brightness change

 42

 - Via the Lockscreen Poster feature
 o Copying text to the clipboard
 o Changing lock screen background
 o Using the app launcher (slow swipe from the left or right edge)
 - Switching user (if multiple users are enabled on the device)
 - Interacting with playing media (play, pause, playing other local media)
]] on behalf of the user to be performed before the user is authenticated.
PP_MDF_V3.3: FIA_UAU_EXT.2.2

The TSF shall require each user to be successfully authenticated before allowing any
other TSF-mediated actions on behalf of that user.

6.1.4.17 Extended: Validation of certificates (FIA_X509_EXT.1)
PP_MDF_V3.3: FIA_X509_EXT.1.1

The TSF shall validate certificates in accordance with the following rules:
- RFC 5280 certificate validation and certificate path validation.
- The certificate path must terminate with a certificate in the Trust Anchor Database.
- The TSF shall validate a certificate path by ensuring the presence of the
basicConstraints extension, that the CA flag is set to TRUE for all CA certificates, and
that any path constraints are met.
- The TSF shall validate that any CA certificate includes caSigning purpose in the key
usage field.
- The TSF shall validate the revocation status of the certificate using [OCSP as
specified in RFC 6960].
- The TSF shall validate the extendedKeyUsage field according to the following rules:

o Certificates used for trusted updates and executable code integrity
verification shall have the Code Signing Purpose (id-kp 3 with OID
1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.

o Server certificates presented for TLS shall have the Server Authentication
purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the extendedKeyUsage
field.

o Server certificates presented for EST shall have the CMC Registration
Authority (RA) purpose (id-kp-cmcRA with OID 1.3.6.1.5.5.7.3.28) in the
EKU field. [conditional]

o Client certificate presented for TLS shall have the Client Authentication
purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2) in the EKU field.

o OCSP certificates presented for OCSP responses shall have the OCSP
Signing purpose (id-kp 9 with OID 1.3.6.1.5.5.7.3.9) in the EKU field.
[conditional]

o
PP_MDF_V3.3: FIA_X509_EXT.1.2
The TSF shall only treat a certificate as a CA certificate if the basicConstraints extension is present and
the CA flag is set to TRUE.

6.1.4.18 Extended: X.509 Certificate Validation
(FIA_X509_EXT.1/WLAN)

MOD_WLAN_CLI_V1.0: FIA_X509_EXT.1.1/WLAN
The TSF shall validate certificates for EAP-TLS in accordance with the following rules:
- RFC 5280 certificate validation and certificate path validation
- The certificate path must terminate with a certificate in the Trust Anchor Database
- The TSF shall validate a certificate path by ensuring the presence of the
basicConstraints extension and that the CA flag is set to TRUE for all CA certificates

- The TSF shall validate the extendedKeyUsage field according to the following rules:
o Server certificates presented for TLS shall have the Server Authentication

purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the extendedKeyUsage field

 43

o Client certificates presented for TLS shall have the Client Authentication
purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2) in the extendedKeyUsage
field.

MOD_WLAN_CLI_V1.0: FIA_X509_EXT.1.2/WLAN
The TSF shall only treat a certificate as a CA certificate if the basicConstraints
extension is present and the CA flag is set to TRUE.

6.1.4.19 Extended: X509 certificate authentication
(FIA_X509_EXT.2)

PP_MDF_V3.3: FIA_X509_EXT.2.1
The TSF shall use X.509v3 certificates as defined by RFC 5280 to support
authentication for [mutually authenticated TLS as defined in the Functional Package for
Transport Layer Security (TLS), version 1.1, HTTPS, [no other protocol]], and [code
signing for system software updates].

PP_MDF_V3.3: FIA_X509_EXT.2.2
When the TSF cannot establish a connection to determine the revocation status of a
certificate, the TSF shall [not accept the certificate].

6.1.4.20 Extended: X.509 Certificate Authentication (EAP-TLS for
WLAN) (FIA_X509_EXT.2/WLAN)

MOD_WLAN_CLI_V1.0: FIA_X509_EXT.2.1/WLAN
The TSF shall use X.509v3 certificates as defined by RFC 5280 to support
[[authentication for EAP-TLS exchanges]]. (TD0703 applied.)

6.1.4.21 Extended: Request Validation of certificates
(FIA_X509_EXT.3)

PP_MDF_V3.3: FIA_X509_EXT.3.1
The TSF shall provide a certificate validation service to applications.

PP_MDF_V3.3: FIA_X509_EXT.3.2
The TSF shall respond to the requesting application with the success or failure of the
validation.

6.1.4.22 Extended: X.509 Certificate Storage and Management
(FIA_X509_EXT.6)

MOD_WLAN_CLI_V1.0: FIA_X509_EXT.6.1
The TSF shall [store and protect] certificate(s) from unauthorized deletion and
modification.

MOD_WLAN_CLI_V1.0: FIA_X509_EXT.6.2
The TSF shall [provide the capability for authorized administrators to load
X.509v3 certificates into the TOE] for use by the TSF.

6.1.5 Security management (FMT)

6.1.5.1 Extended: Management of security functions behavior
(FMT_MOF_EXT.1)

PP_MDF_V3.3: FMT_MOF_EXT.1.1
The TSF shall restrict the ability to perform the functions [in column 3 of Table 6] to the
user.

 44

PP_MDF_V3.3: FMT_MOF_EXT.1.2
The TSF shall restrict the ability to perform the functions in [column 5 of Table 6] to the
administrator when the device is enrolled and according to the administrator-
configured policy.

6.1.5.2 Extended: Specification of Management Functions
(FMT_SMF.1)

PP_MDF_V3.3: FMT_SMF.1.1
The TSF shall be capable of performing the following management functions.

Table 6: Security Management Functions
Management Function

Status Markers:
M – Mandatory
O - Optional/Objective

Im
pl.

U
sers O

nly

A
dm

in

A
dm

in O
nly

1. configure password policy:
 a. minimum password length
 b. minimum password complexity
 c. maximum password lifetime
The administrator can configure the required password characteristics
(minimum length, complexity, and lifetime) using the Android MDM
APIs.
Length: an integer value of characters
Complexity: Unspecified, Something, Numeric, Alphabetic,
Alphanumeric, Complex.
Lifetime: an integer value of seconds (0 = no maximum).

M - M M

2. configure session locking policy:
a. screen-lock enabled/disabled
b. screen lock timeout
c. number of authentication failures

The administrator can configure the session locking policy using the
Android MDM APIs.
Screen lock timeout: an integer number of minutes before the TOE
locks (0 = no lock timeout)
Authentication failures: an integer number (-2,147,483,648 to
2,147,483,648 [negative integers and zero means no limit]).

M - M M

3. enable/disable the VPN protection:
 a. across device
 [b. on a per-app basis]
Both users (using the TOE’s settings UI) and administrator (using the
TOE’s MDM APIs) can configure a third-party VPN client and then
enable the VPN client to protect traffic. The User can set up VPN
protection, but if an admin enables VPN protection, the user cannot
disable it.

M O O O

4. enable/disable [Bluetooth,
 NFC, Wi-Fi, cellular (GSM/WCDMA/LTE
TDD/ LTE FDD/5G NR)]
The administrator can disable the Bluetooth using the TOE’s MDM APIs.
Once disabled, a user cannot enable the Bluetooth.
The administrator cannot fully disable/restrict NFC, Wi-Fi or cellular
voice capabilities.
Radios are not used as part of the initialization of the device. Only
when the radios are enabled, they are initialed in system service phase
of TOE’s boot sequence.

M
M

O

O O

 45

The TOE’s radios operate at frequencies of 13.56 MHz (NFC), 2.4 GHz
(Bluetooth), 2.4/5 GHz (Wi-Fi), 850/900/1800/1900MHz (GSM), Bands
1/2/4/5/6/8/19 (WCDMA), Bands 34/38/39/40/41/42 (TDD-LTE), Bands
1/2/3/4/5/7/8/12/17/18/19/20/25/26/28/32/66 (LTE FDD),
n1/n2/n3/n5/n7/n8/n12/n20/n28/n38/n40/n41/n77/n78/n66 (5G NR).
5. enable/disable [microphone, camera]:
 a. across device (microphone, camera),
 [b. on a per-app basis (microphone, camera)]
An administrator can enable/disable the device’s microphone and
camera via an MDM API. Once the microphone or camera has been
disabled, the user cannot re-enable it until the administrator enables it.
In the user’s settings, a user can view a permission by type (i.e.
camera, microphone). The user can access this by going to “Settings” -
> “App Permissions” -> Selecting the permission and revoking any
applications.

M
M

-

O

O

6. transition to the locked state
Both users (using the TOE’s settings UI) and administrators (using the
TOE’s MDM APIs) can transition the TOE into a locked state.

M - M -

7. TSF wipe of protected data
Both users (using the TOE’s settings UI) and administrators (using the
TOE’s MDM APIs) can force the TOE to perform a full wipe (factory
reset) of data.

M - M -

8. configure application installation policy by:
 [a. restricting the sources of applications
 c. denying installation of applications]
The administrator using the TOE’s MDM APIs can configure the TOE so
that applications cannot be installed and can also block the use of the
Google Market Place.

M - M M

9. import keys/secrets into the secure key storage
Both users (using the TOE’s settings UI) and administrators (using the
TOE’s MDM APIs) can import secret keys into the secure key storage.

M O O -

10. destroy imported keys/secrets and [no other keys/secrets] in
the secure key storage Both users and administrators (using the TOE’s
MDM APIs) can destroy secret keys in the secure key storage.

M O O -

11. import X.509v3 certificates into the Trust Anchor Database
Both users (using the TOE’s settings UI) and administrators (using the
TOE’s MDM APIs) can import X.509v3 certificates into the Trust Anchor
Database.

M - M O

12. remove imported X.509v3 certificates and [no other X.509v3
certificates] in the Trust Anchor Database
Both users (using the TOE’s settings UI) and administrators (using the
TOE’s MDM APIs) can remove imported X.509v3 certificates from the
Trust Anchor Database as well as disable any of the TOE’s default Root
CA certificates (in the latter case, the CA certificate still resides in the
TOE’s read-only system partition; however, the TOE will treat that Root
CA certificate and any certificate chaining to it as untrusted).

M O O -

13. enroll the TOE in management
TOE users can enroll the TOE in management according to the
instructions specific to a given MDM. Presumably any enrollment would
involve at least some user functions (e.g., install an MDM agent
application) on the TOE prior to enrollment.

M O O O

14. remove applications
Both users (using the TOE’s settings UI) and administrators (using the
TOE’s MDM APIs) can uninstall user and administrator installed
applications on the TOE.

M - M O

15. update system software
Users can check for updates and cause the device to update if an
update is available. An administrator can use MDM APIs to query the
version of the TOE and query the installed applications and an MDM

M - M O

 46

agent on the TOE could issue pop-ups, initiate updates, block
communication, etc. until any necessary updates are completed.
16. install applications
Both users and administrators (using the TOE’s MDM APIs) can install
applications on the TOE.

M - M O

17. remove Enterprise applications
An administrator (using the TOE’s MDM APIs) can uninstall Enterprise
installed applications on the TOE.

M - M -

18. enable/disable display notification in the locked state of:
[f. all notifications]

Notifications can be configured to display in the following formats:
Users & administrators: show all notification content
Users: hide sensitive content
Users & administrators: hide notifications entirely
If the administrator sets any of the above settings, the user cannot
change it.

M O O O

19. enable data-at rest protection
The TOE always encrypts its user data storage.

M O O O

20. enable removable media’s data-at-rest protection. M O O O
21. enable/disable location services:
 a. across device
 [d. no other method]
The administrator (using the TOE’s MDM APIs) can enable or disable
location services.
An additional MDM API can prohibit TOE users ability to enable and
disable location services.

M O O O

22. Enable/disable the use of [selection: Biometric
Authentication Factor, Hybrid Authentication Factor]

O O O O

23. configure whether to allow/disallow establishment of a trusted
channel if the peer/server certificate is deemed invalid
The TOE will not connect to the Wi-Fi if peer/server certificate is
deemed invalid, and there is no configuration interface to override this.
For TLS connection, the API provides “trustmanager” class as the
configuration interface. If user does not define this “trustmanager”
class, TOE will not establish the trusted channel.

M O O O

24. enable/disable all data signaling over [assignment: list of
externally accessible hardware ports]

O O O O

25. enable/disable [Wi-Fi hotspot, USB tethering, and Bluetooth
tethering]
The administrator (using the TOE’s MDM APIs) can enable/disable all
tethering methods (i.e. all or none disabled).
The TOE acts as a server (acting as an access point, a USB Ethernet
adapter, and as a Bluetooth Ethernet adapter respectively) in order to
share its network connection with another device.

O O O O

26. enable/disable developer modes
The administrator (using the TOE’s MDM APIs) can disable Developer
Mode.
Unless disabled by the administrator, TOE users can enable and disable
Developer Mode.

O O O O

27. enable/disable bypass of local user authentication
N/A – It is not possible to bypass local user auth for this TOE

O O O O

28. wipe Enterprise data
An administrator can remove Enterprise applications and their data.

O O O -

29. approve [import, removal] by applications of X.509v3 certificates
in the Trust Anchor Database

O O O O

30. configure whether to allow/disallow establishment of a trusted
channel if the TSF cannot establish a connection to determine the
validity of a certificate

O O O O

31. enable/disable the cellular protocols used to connect to cellular
network base stations

O O O O

 47

32. read audit logs kept by the TSF
The administrator could read logs that kept by the TSF using "TestDPC
-> Request security logs", and user could read logs via “LogKit” tool.

O O O -

33. configure [selection: certificate, public-key] used to validate
digital signature on applications

O O O O

34. approve exceptions for shared use of keys/secrets by multiple
applications

O O O O

35. approve exceptions for destruction of keys/secrets by applications
that did not import the key/secret

O O O O

36. configure the unlock banner O - O O
37. configure the auditable items O - O O
38. retrieve TSF-software integrity verification values O O O O
39. enable/disable [
 a. USB mass storage mode,
]

O O O O

40. enable/disable backup to [all applications] to [remote system] O O O O
41. enable/disable [
 a. Hotspot functionality authenticated by [pre-shared
key],
 b. USB tethering authenticated by [no authentication]]
The administrator (using the TOE’s MDM APIs) can disable the Wi-Fi
hotspot and USB tethering.
Unless disabled by the administrator, TOE users can configure the Wi-Fi
hotspot with a pre-shared key and can configure USB tethering (with
no authentication).

O O O O

42. approve exceptions for sharing data between [groups of
application]

O O O O

43. place applications into application process groups based on
[assignment: enterprise configuration settings]

O O O O

44. Unenroll the TOE from management O O O O
45. enable/disable the Always On VPN protection:
 a. across device
 [selection:
 b. on a per-app basis,
 c. on a per-group of applications processes basis,
 d. no other method]

O O O O

46. Revoke Biometric template O O O O
47. [assignment: list of other management functions to be
provided by the TSF]

O O O O

6.1.5.3 Extended: Specification of Management Functions
(FMT_SMF_EXT.1/BT)

MOD_BT_V1.0: FMT_SMF_EXT.1.1/BT
The TSF shall be capable of performing the functions of Table 7 Bluetooth Management
Functions:

Table 7: Bluetooth Management Functions
Management Function

Status Markers:
M – Mandatory
O - Optional/Objective

Im
pl.

U
sers O

nly

A
dm

in

A
dm

in O
nly

BT-1. Configure the Bluetooth trusted channel.
• Disable/enable the Discoverable (for BR/EDR) and Advertising

(for LE) modes;

M O O O

BT-2. Change the Bluetooth device name (separately for BR/EDR and
LE);

O O O O

 48

BT-3. Provide separate controls for turning the BR/EDR and LE radios
on and off;

- - - -

BT-4. Allow/disallow the following additional wireless technologies to be
used with Bluetooth: [selection: Wi-Fi, NFC, [assignment: other
wireless technologies]];

- - - -

BT-5. Configure allowable methods of Out of Band pairing (for BR/EDR
and LE);

- - - -

BT-6. Disable/enable the Discoverable (for BR/EDR) and Advertising (for
LE) modes separately;

- - - -

BT-7. Disable/enable the Connectable mode (for BR/EDR and LE); - - - -
BT-8. Disable/enable the Bluetooth [assignment: list of Bluetooth
service and/or profiles available on the OS (for BR/EDR and
LE)].

- - - -

BT-9. Specify minimum level of security for each pairing (for BR/EDR
and LE);

- - - -

6.1.5.4 Extended: Specification of Management Functions (WLAN
Client) (FMT_SMF.1/WLAN)

MOD_WLAN_CLI_V1.0: FMT_SMF.1.1/WLAN
 The TSF shall be capable of performing the following management functions:

Table 8: WLAN Client Management Functions
Management Function

Status Markers:
M – Mandatory
O - Optional/Objective

Im
pl.

A
dm

in

U
ser

WL-1. configure security policy for each wireless network:
• [specify the CA (s) from which the TSF will accept WLAN

authentication server certificate(s)],
• security type,
• authentication protocol,
• client credentials to be used for authentication

M M O

WL-2. specify wireless networks (SSIDs) to which the TSF may connect M M O
WL-3. enable/disable wireless network bridging capability (for example,
bridging a connection between the WLAN and cellular radios to function as a
hotspot) authenticated by [pre-shared key, no authentication]

M M O

WL-4. enable/disable certificate revocation list checking O O O
WL-5. disable ad hoc wireless client-to-client connection capability O O O
WL-6. disable roaming capability O O O
WL-7. enable/disable IEEE 802.1X pre-authentication O O O
WL-8. loading X.509 certificates into the TOE O O O
WL-9. revoke X.509 certificates loaded into the TOE O O O
WL-10. enable/disable and configure PMK caching:
set the amount of time (in minutes) for which PMK entries are cached,
set the maximum number of PMK entries that can be cached

O O O

WL-11. configure security policy for each wireless network: set wireless
frequency band to [selection: 2.4 GHz, 5 GHz, 6 GHz]

O O O

(TD0667 Applied)

6.1.5.5 Extended: Specification of Remediation Actions
(FMT_SMF_EXT.2)

PP_MDF_V3.3: FMT_SMF_EXT.2.1

 49

The TSF shall offer [wipe of protected data, wipe of sensitive data, remove
Enterprise applications, remove all device-stored Enterprise resource data,]
upon unenrollment and [factory reset].

6.1.6 Protection of the TSF (FPT)

6.1.6.1 Extended: Application Address Space Layout
Randomization (FPT_AEX_EXT.1)

PP_MDF_V3.3: FPT_AEX_EXT.1.1
The TSF shall provide address space layout randomization ASLR to application.

PP_MDF_V3.3: FPT_AEX_EXT.1.2
The base address of any user-space memory mapping will consist of at least 8
unpredictable bits.

6.1.6.2 Extended: Memory Page Permissions (FPT_AEX_EXT.2)
PP_MDF_V3.3: FPT_AEX_EXT.2.1

The TSF shall be able to enforce read, write, and execute permissions on every page of
physical memory.

6.1.6.3 Extended: Stack Overflow Protection (FPT_AEX_EXT.3)
PP_MDF_V3.3: FPT_AEX_EXT.3.1

TSF processes that execute in a non-privileged execution domain on the application
processor shall implement stack-based buffer overflow protection.

6.1.6.4 Extended: Domain Isolation (FPT_AEX_EXT.4)
PP_MDF_V3.3: FPT_AEX_EXT.4.1

The TSF shall protect itself from modification by untrusted subjects.
PP_MDF_V3.3: FPT_AEX_EXT.4.2

The TSF shall enforce isolation of address space between applications.

6.1.6.5 Extended: JTAG Disablement (FPT_JTA_EXT.1)
PP_MDF_V3.3: FPT_JTA_EXT.1.1

The TSF shall [control access by a signing key] to JTAG.

6.1.6.6 Extended: Key Storage (FPT_KST_EXT.1)
PP_MDF_V3.3: FPT_KST_EXT.1.1

The TSF shall not store any plaintext key material in readable non-volatile memory.

6.1.6.7 Extended: No Key Transmission (FPT_KST_EXT.2)
PP_MDF_V3.3: FPT_KST_EXT.2.1

The TSF shall not transmit any plaintext key material outside the security boundary of
the TOE.

6.1.6.8 Extended: No Plaintext Key Export (FPT_KST_EXT.3)
PP_MDF_V3.3: FPT_KST_EXT.3.1

The TSF shall ensure it is not possible for the TOE user(s) to export plaintext keys.

 50

6.1.6.9 Extended: Self-Test Notification (FPT_NOT_EXT.1)
PP_MDF_V3.3: FPT_NOT_EXT.1.1

The TSF shall transition to non-operational mode and [no other actions] when the
following types of failures occur:
- failures of the self-test(s)
- TSF software integrity verification failures
- [no other failures]

6.1.6.10 Reliable time stamps (FPT_STM.1)
PP_MDF_V3.3: FPT_STM.1.1

The TSF shall be able to provide reliable time stamps for its own use.

6.1.6.11 Extended: TSF Cryptographic Functionality Testing
(FPT_TST_EXT.1)

PP_MDF_V3.3: FPT_TST_EXT.1.1
The TSF shall run a suite of self-tests during initial start-up (on power on) to
demonstrate the correct operation of all cryptographic functionality.

6.1.6.12 Extended: TSF Integrity Checking (Pre-Kernel)
(FPT_TST_EXT.2/PREKERNEL)

PP_MDF_V3.3: FPT_TST_EXT.2.1/PREKERNEL
The TSF shall verify the integrity of [the bootchain up through the Application
Processor OS kernel] stored in mutable media prior to its execution through the use of
[an immutable hardware hash of an asymmetric key].

6.1.6.13 Extended: TSF Cryptographic Functionality Testing (WLAN
Client) (FPT_TST_EXT.3/WLAN)

MOD_WLAN_CLI_V1.0: FPT_TST_EXT.3.1/WLAN
The [TOE] shall run a suite of self-tests during initial start-up (on power on) to
demonstrate the correct operation of the TSF.

MOD_WLAN_CLI_V1.0: FPT_TST_EXT.3.2/WLAN
The [TOE] shall provide the capability to verify the integrity of stored TSF executable
code when it is loaded for execution through the use of the TSF-provided cryptographic
services.

6.1.6.14 Extended: Trusted Update: TSF version query
(FPT_TUD_EXT.1)

PP_MDF_V3.3: FPT_TUD_EXT.1.1
The TSF shall provide authorized users the ability to query the current version of the
TOE firmware/software.

PP_MDF_V3.3: FPT_TUD_EXT.1.2
The TSF shall provide authorized users the ability to query the current version of the
hardware model of the device.

PP_MDF_V3.3: FPT_TUD_EXT.1.3
The TSF shall provide authorized users the ability to query the current version of
installed mobile applications.

 51

6.1.6.15 Extended: TSF Update Verification (FPT_TUD_EXT.2)
PP_MDF_V3.3: FPT_TUD_EXT.2.1

The TSF shall verify software updates to the Application Processor system software and
[baseband processor software] using a digital signature verified by the
manufacturer trusted key prior to installing those updates.

PP_MDF_V3.3: FPT_TUD_EXT.2.2
The TSF shall [never update] the TSF boot integrity [hash].

PP_MDF_V3.3: FPT_TUD_EXT.2.3
The TSF shall verify that the digital signature verification key used for TSF updates
[matches an immutable hardware public key].

6.1.6.16 Extended: Application Signing (FPT_TUD_EXT.3)
PP_MDF_V3.3: FPT_TUD_EXT.3.1

The TSF shall verify mobile application software using a digital signature mechanism
prior to installation.

6.1.7 TOE access (FTA)

6.1.7.1 Extended: TSF- and User-initiated locked state
(FTA_SSL_EXT.1)

PP_MDF_V3.3: FTA_SSL_EXT.1.1
The TSF shall transition to a locked state after a time interval of inactivity.

PP_MDF_V3.3: FTA_SSL_EXT.1.2
The TSF shall transition to a locked state after initiation by either the user or the
administrator.

PP_MDF_V3.3: FTA_SSL_EXT.1.3
The TSF shall, upon transitioning to the locked state, perform the following operations:

– clearing or overwriting display devices, obscuring the previous contents;
– [no other actions].

6.1.7.2 Default TOE access banners (FTA_TAB.1)
PP_MDF_V3.3: FTA_TAB.1.1

Before establishing a user session, the TSF shall display an advisory warning message
regarding unauthorized use of the TOE.

6.1.7.3 Extended: Wireless Network Access (FTA_WSE_EXT.1)
MOD_WLAN_CLI_V1.0: FTA_WSE_EXT.1.1

The TSF shall be able to attempt connections only to wireless networks specified as
acceptable networks as configured by the administrator in FMT_SMF.1.1/WLAN.

6.1.8 Trusted path/channels (FTP)

6.1.8.1 Extended: Bluetooth Encryption (FTP_BLT_EXT.1)
MOD_BT_V1.0: FTP_BLT_EXT.1.1

The TSF shall enforce the use of encryption when transmitting data over the Bluetooth
trusted channel for BR/EDR and [LE].

MOD_BT_V1.0: FTP_BLT_EXT.1.2
The TSF shall use key pairs per FCS_CKM_EXT.8 for Bluetooth encryption.

 52

6.1.8.2 Extended: Persistence of Bluetooth Encryption
(FTP_BLT_EXT.2)

MOD_BT_V1.0: FTP_BLT_EXT.2.1
The TSF shall [terminate the connection] if the remote device stops encryption
while connected to the TOE.

6.1.8.3 Extended: Bluetooth Encryption Parameters (BR/EDR)
(FTP_BLT_EXT.3/BR)

MOD_BT_V1.0: FTP_BLT_EXT.3.1/BR
The TSF shall set the minimum encryption key size to [128 bits] for [BR/EDR] and not
negotiate encryption key sizes smaller than the minimum size. (TD0640 applied.)

6.1.8.4 Extended: Bluetooth Encryption Parameters (LE)
(FTP_BLT_EXT.3/LE)

MOD_BT_V1.0: FTP_BLT_EXT.3.1/LE
The TSF shall set the minimum encryption key size to [128 bits] for [LE] and not
negotiate encryption key sizes smaller than the minimum size. (TD0640 applied.)

6.1.8.5 Extended: Trusted channel Communication
(FTP_ITC_EXT.1)

PP_MDF_V3.3: FTP_ITC_EXT.1.1
The TSF shall use

§ 802.11-2012 in accordance with the [PP-Module for Wireless LAN Clients,
version 1.0],

§ 802.1X in accordance with the [PP-Module for Wireless LAN Clients, version
1.0],

§ EAP-TLS in accordance with the [PP-Module for Wireless LAN Clients, version
1.0],

§ Mutually authenticated TLS in accordance with [the Functional Package for
Transport Layer Security (TLS), version 1.1]

and [
§ HTTPS

] protocols to provide a communication channel between itself and another trusted IT
product that is logically distinct from other communication channels, provides assured
identification of its end points, protects channel data from disclosure, and detects
modification of the channel data.

PP_MDF_V3.3: FTP_ITC_EXT.1.2
The TSF shall permit the TSF to initiate communication via the trusted channel.

PP_MDF_V3.3: FTP_ITC_EXT.1.3
The TSF shall initiate communication via the trusted channel for wireless access point
connections, administrative communication, configured enterprise connections, and
[no other connections].

6.1.8.6 Trusted Channel Communication (Wireless LAN)
(FTP_ITC.1/WLAN)

MOD_WLAN_CLI_V1.0: FTP_ITC.1.1/WLAN
The TSF shall use 802.11-2012, 802.1X, and EAP-TLS to provide a trusted
communication channel between itself and a wireless access point that is logically
distinct from other communication channels and provides assured identification of its
end points and protection of the channel data from modification or disclosure.

 53

MOD_WLAN_CLI_V1.0: FTP_ITC.1.2/WLAN
The TSF shall permit [the TSF] to initiate communication via the trusted channel.

MOD_WLAN_CLI_V1.0: FTP_ITC.1.3/WLAN
The TSF shall initiate communication via the trusted channel for [wireless access
point connections].

6.2 TOE Security Assurance Requirements
The SARs for the TOE are the components as specified in Part 3 of the Common Criteria. Note that the
SARs have effectively been refined with the assurance activities explicitly defined in association with
both the SFRs and SARs.

Table 9: Security Assurance Requirements

Requirement Class Requirement Component

Security Target (ASE)

ASE_CCL.1: Conformance claims

ASE_ECD.1: Extended components definition

ASE_INT.1: ST introduction

ASE_OBJ.1: Security objectives for the operational environment

ASE_REQ.1: Stated security requirements

ASE_SPD.1: Security Problem Definition

ASE_TSS.1: TOE summary specification

ADV: Development ADV_FSP.1: Basic functional specification

AGD: Guidance documents
AGD_OPE.1: Operational user guidance

AGD_PRE.1: Preparative procedures

ALC: Life-cycle support

ALC_CMC.1: Labelling of the TOE

ALC_CMS.1: TOE CM coverage

ALC_TSU_EXT.1: Timely Security Updates

ATE: Tests ATE_IND.1: Independent Testing – Sample

AVA: Vulnerability assessment AVA_VAN.1: Vulnerability survey

6.2.1 Development (ADV)

6.2.1.1 Basic functional specification (ADV_FSP.1)
ADV_FSP.1.1d

The developer shall provide a functional specification.
ADV_FSP.1.2d

The developer shall provide a tracing from the functional specification to the SFRs.

 54

ADV_FSP.1.3c
The functional specification shall describe the purpose and method of use for each
SFR-enforcing and SFR-supporting TSFI.

ADV_FSP.1.4c
The functional specification shall identify all parameters associated with each SFR-
enforcing and SFR-supporting TSFI.

ADV_FSP.1.5c
The functional specification shall provide rationale for the implicit categorization of
interfaces as SFR-non-interfering.

ADV_FSP.1.6c
The tracing shall demonstrate that the SFRs trace to TSFIs in the functional
specification.

ADV_FSP.1.7e
The evaluator shall confirm that the information provided meets all requirements for
content and presentation of evidence.

ADV_FSP.1.8e
The evaluator shall determine that the functional specification is an accurate and
complete instantiation of the SFRs.

6.2.2 Guidance documents (AGD)

6.2.2.1 Operational user guidance (AGD_OPE.1)
AGD_OPE.1.1d

The developer shall provide operational user guidance.
AGD_OPE.1.2c

The operational user guidance shall describe, for each user role, the user- accessible
functions and privileges that should be controlled in a secure processing environment,
including appropriate warnings.

AGD_OPE.1.3c
The operational user guidance shall describe, for each user role, how to use the
available interfaces provided by the TOE in a secure manner.

AGD_OPE.1.4c
The operational user guidance shall describe, for each user role, the available
functions and interfaces, in particular all security parameters under the control of the
user, indicating secure values as appropriate.

AGD_OPE.1.5c
The operational user guidance shall, for each user role, clearly present each type of
security-relevant event relative to the user-accessible functions that need to be
performed, including changing the security characteristics of entities under the control
of the TSF.

AGD_OPE.1.6c
The operational user guidance shall identify all possible modes of operation of the OS
(including operation following failure or operational error), their consequences, and
implications for maintaining secure operation.

AGD_OPE.1.7c
The operational user guidance shall, for each user role, describe the security measures
to be followed in order to fulfill the security objectives for the operational environment
as described in the ST.

AGD_OPE.1.8c
The operational user guidance shall be clear and reasonable.

 55

AGD_OPE.1.9e
The evaluator shall confirm that the information provided meets all requirements for
content and presentation of evidence.

6.2.2.2 Preparative procedures (AGD_PRE.1)
AGD_PRE.1.1d

The developer shall provide the TOE, including its preparative procedures.
AGD_PRE.1.2c

The preparative procedures shall describe all the steps necessary for secure
acceptance of the delivered TOE in accordance with the developer's delivery
procedures.

AGD_PRE.1.3c
The preparative procedures shall describe all the steps necessary for secure
installation of the TOE and for the secure preparation of the operational environment in
accordance with the security objectives for the operational environment as described
in the ST.

AGD_PRE.1.4e
The evaluator shall confirm that the information provided meets all requirements for
content and presentation of evidence.

AGD_PRE.1.5e
The evaluator shall apply the preparative procedures to confirm that the OS can be
prepared securely for operation.

6.2.3 Life-cycle support (ALC)

6.2.3.1 Labelling of the TOE (ALC_CMC.1)
ALC_CMC.1.1d

The developer shall provide the TOE and a reference for the TOE.
ALC_CMC.1.2c

The TOE shall be labeled with a unique reference.
ALC_CMC.1.3e

The evaluator shall confirm that the information provided meets all requirements for
content and presentation of evidence.

6.2.3.2 TOE CM coverage (ALC_CMS.1)
ALC_CMS.1.1d

The developer shall provide a configuration list for the TOE.
ALC_CMS.1.2c

The configuration list shall include the following: the TOE itself; and the evaluation
evidence required by the SARs.

ALC_CMS.1.3c
The configuration list shall uniquely identify the configuration items.

ALC_CMS.1.4e
The evaluator shall confirm that the information provided meets all requirements for
content and presentation of evidence.

6.2.3.3 Timely Security Updates (ALC_TSU_EXT.1)
ALC_TSU_EXT.1.1d

The developer shall provide a description in the TSS of how timely security updates are
made to the TOE.

 56

ALC_TSU_EXT.1.2c
The description shall include the process for creating and deploying security updates
for the TOE software.

ALC_TSU_EXT.1.3c
The description shall express the time window as the length of time, in days, between
public disclosure of a vulnerability and the public availability of security updates to the
TOE.

ALC_TSU_EXT.1.4c
The description shall include the mechanisms publicly available for reporting security
issues pertaining to the TOE.

ALC_TSU_EXT.1.5c
The description shall include where users can seek information about the availability of
new updates including details (e.g. CVE identifiers) of the specific public vulnerabilities
corrected by each update.

ALC_TSU_EXT.1.6e
The evaluator shall confirm that the information provided meets all requirements for
content and presentation of evidence.

6.2.4 Tests (ATE)

6.2.4.1 Independent testing - conformance (ATE_IND.1)
ATE_IND.1.1d

The developer shall provide the TOE for testing.
ATE_IND.1.2c

The TOE shall be suitable for testing.
ATE_IND.1.3e

The evaluator shall confirm that the information provided meets all requirements for
content and presentation of evidence.

ATE_IND.1.4e
The evaluator shall test a subset of the TSF to confirm that the TSF operates as
specified.

6.2.5 Vulnerability assessment (AVA)

6.2.5.1 Vulnerability survey (AVA_VAN.1)
AVA_VAN.1.1d

The developer shall provide the TOE for testing.
AVA_VAN.1.2c

The TOE shall be suitable for testing.
AVA_VAN.1.3e

The evaluator shall confirm that the information provided meets all requirements for
content and presentation of evidence.

AVA_VAN.1.4e
The evaluator shall perform a search of public domain sources to identify potential
vulnerabilities in the TOE.

AVA_VAN.1.5e
The evaluator shall conduct penetration testing, based on the identified potential
vulnerabilities, to determine that the TOE is resistant to attacks performed by an
attacker possessing Basic attack potential.

 57

7 TOE Summary Specification
This chapter describes the security functions:

• Security audit

• Cryptographic support

• User data protection

• Identification and authentication

• Security management

• Protection of the TSF

• TOE access

• Trusted path/channels

7.1 Security Audit
PP_MDF_V3.3: FAU_GEN.1 and
MOD_WLAN_CLI_V1.0: FAU_GEN.1/WLAN
The TOE uses different forms of logs to meet all the required management logging events specified in
Table 2 of the PP_MDF_V3.3 and all mandatory auditable events specified by the MOD_BT_V1.0 and
MOD_WLAN_CLI_V1.0:

1. Security Logs
2. Logcat Logs

Each of the above logging methods are described below.

• Security Logs: A table that depicts the list of all auditable events (for PP_MDF_V3.3 and all
mandatory auditable events specified by the MOD_BT_V1.0 and MOD_WLAN_CLI_V1.0) can be
found here: https://developer.android.com/reference/android/app/admin/SecurityLog.
Additionally, the following link provides the additional information that can be grabbed when
an MDM requests a copy of the logs:
https://developer.android.com/reference/android/app/admin/SecurityLog.SecurityEvent. Each
log contains a keyword or phrase describing the event, the date and time of the event, and
further event- specific values that provide success, failure, and other information relevant to
the event. These logs can be read by an administrator via an MDM agent.

• Logcat Logs: Similar to Security Logs, Logcat Logs contain date, time, and further even-specific
values within the logs. In addition, Logcat Logs provide a value that maps to a user ID to
identify which user caused the event that generated the log. Finally, Logcat Logs are
descriptive and do not require the administrator to know the template of the log to understand
its values. Logcat Logs cannot be exported but can be viewed by an administrator via an MDM
agent.

Both types of logs, when full, wrap around and overwrite the oldest log (as the start of the buffer).
WLAN client does not implement its own log mechanism, and Logcat logs mechanism as described
above is invoked by WLAN client to collect the WLAN events.
Each log entry is formatted as: “<Keyword> (<Date><Timestamp>): <message>”, where “Keyword”
indicates what type of the log it is, “<Date><Timestamp>” indicates the exact time the entry is
recorded, and “<message>” shows the content of the log entry.
The following table enumerates the events that the TOE audits.

Table 10: Audit Event

Requirement Auditable Events Additional Audit Record
Contents

 58

FAU_GEN.1 No events specified N/A

FAU_GEN.1/WLAN No events specified N/A

FAU_SAR.1 No events specified N/A

FAU_STG.1 No events specified N/A

FAU_STG.4 No events specified N/A

FCS_CKM.1 [None]. No additional information.

FCS_CKM.1/WPA No events specified N/A

FCS_CKM.2/UNLOCKED No events specified N/A

FCS_CKM.2/LOCKED No events specified N/A

FCS_CKM.2/WLAN No events specified N/A

FCS_CKM_EXT.1 [None]. No additional information.

FCS_CKM_EXT.2 No events specified N/A

FCS_CKM_EXT.3 No events specified N/A

FCS_CKM_EXT.4 No events specified N/A

FCS_CKM_EXT.5 [None]. No additional information.

FCS_CKM_EXT.6 No events specified N/A

FCS_CKM_EXT.8 No events specified N/A

FCS_COP.1/ENCRYPT No events specified N/A

FCS_COP.1/HASH No events specified N/A

FCS_COP.1/SIGN No events specified N/A

FCS_COP.1/KEYHMAC No events specified N/A

FCS_COP.1/CONDITION No events specified N/A

FCS_IV_EXT.1 No events specified N/A

FCS_SRV_EXT.1 No events specified N/A

FCS_STG_EXT.1 Import or destruction of key. Identity of key, role and
identity of requester.

[None] Identity of key, role and
identity of requester.

FCS_STG_EXT.2 No events specified N/A

 59

FCS_STG_EXT.3 Failure to verify integrity of
stored key. Identity of key being verified.

FCS_TLSC_EXT.1/WLAN Failure to establish an EAP-TLS
session.

Reason for failure.
Non-TOE endpoint of
connection.

Establishment/termination of
an EAP-TLS session.

Non-TOE endpoint of
connection.

FCS_WPA_EXT.1 No events specified N/A

FDP_DAR_EXT.1 [None] No additional information

FDP_DAR_EXT.2 [Failure to encrypt/decrypt
data] No additional information

FDP_IFC_EXT.1 No events specified N/A

FDP_STG_EXT.1 Addition or removal of
certificate from Trust Anchor
Database.

Subject name of certificate.

FIA_BLT_EXT.1 Failed user authorization of
Bluetooth device.

User authorization decision
(e.g., user rejected connection,
incorrect pin entry).

Failed user authorization for
local Bluetooth Service.

Bluetooth address and name of
device. Bluetooth profile.
Identity of local service with
[service ID].

FIA_BLT_EXT.2 Initiation of Bluetooth
connection.

Bluetooth address and name of
device.

Failure of Bluetooth connection. Reason for failure.

FIA_BLT_EXT.4 No events specified N/A

FIA_BLT_EXT.6 No events specified N/A

FIA_BLT_EXT.7 No events specified N/A

FIA_PAE_EXT.1 No events specified N/A

FIA_PMG_EXT.1 No events specified N/A

FIA_TRT_EXT.1 No events specified N/A

FIA_UAU.5 No events specified N/A

FIA_UAU.7 No events specified N/A

FIA_UAU_EXT.1 No events specified N/A

 60

FIA_X509_EXT.1 Failure to validate X.509v3
certificate. Reason for failure of validation.

FIA_X509_EXT.1/WLAN Failure to validate X.509v3
certificate. Reason for failure of validation.

FIA_X509_EXT.2/WLAN No events specified N/A

FIA_X509_EXT.6 Attempts to load certificates. None

Attempts to revoke certificates. None

FMT_MOF_EXT.1 No events specified N/A

FMT_SMF.1/WLAN No events specified N/A

FPT_AEX_EXT.1 No events specified N/A

FPT_AEX_EXT.2 No events specified N/A

FPT_AEX_EXT.3 No events specified N/A

FPT_JTA_EXT.1 No events specified N/A

FPT_KST_EXT.1 No events specified N/A

FPT_KST_EXT.2 No events specified N/A

FPT_KST_EXT.3 No events specified N/A

FPT_NOT_EXT.1 [None]. [No additional information].

FPT_STM.1 No events specified N/A

FPT_TST_EXT.1 Initiation of self-test. No additional information

Failure of self-test. [None]

FPT_TST_EXT.2/PREKERNEL Start-up of TOE. No additional information.

[None] [No additional information]

FPT_TST_EXT.3/WLAN Execution of this set of TSF
self-tests. None

[None]. [None].

FPT_TUD_EXT.1 No events specified N/A

FTA_SSL_EXT.1 No events specified N/A

FTA_TAB.1 No events specified N/A

FTA_WSE_EXT.1 All attempts to connect to
access points.

For each access point record
the [Certificate Check
Message and the last [6]

 61

octets] of the MAC Address
Success and failures
(including reason for failure).

FTP_BLT_EXT.1 No events specified N/A

FTP_BLT_EXT.2 No events specified N/A

FTP_BLT_EXT.3/BR No events specified N/A
FTP_BLT_EXT.3/LE
(if claimed)

No events specified N/A

FTP_ITC.1/WLAN All attempts to establish a
trusted channel.

Identification of the non-TOE
endpoint of the channel.

PP_MDF_V3.3: FAU_SAR.1: The administrator can read out all audited events and record contents in
human-readable format from the audit records stored in the TOE.
PP_MDF_V3.3: FAU_STG.1: For security logs, the TOE stores all audit records in memory, making it
only accessible to the “logd” daemon, and only applications that are set with the “device owners”
permission by MDM can call the MDM API to retrieve a copy of the logs. Additionally, only new logs can
be added. There is no designated method allowing for the deletion or modification of logs already
present in memory, but reading the security logs clears the buffer at the time of the read.
The TOE stores Logcat Logs in memory and only allows access by an administrator via an MDM Agent.
The TOE prevents deleted of these logs by any method other than USB debugging (and enabling USB
Debugging takes the phone out of the evaluated configuration).
PP_MDF_V3.3: FAU_STG.4: The security logs and logcat logs are stored in memory in a circular log
buffer of 4096KB/256KB, respectively. Logcat logs alone have a configurable size, able to be set by an
MDM API. There is no limit to the size that the Logcat log buffer can be configured to and it is limited to
the size of the system’s memory. Each log system retains its own circular buffer. Once either the log is
full, it begins overwriting the oldest message in its respective buffer and continues overwriting the oldest
message with each new auditable event. These logs persist until they are either overwritten or the
device is restarted.

7.2 Cryptographic Support
The TOE implements cryptographic algorithms in accordance with the following NIST standards.

Table 11: Supported Cryptographic Algorithms

Algorithm NIST Standard SFR Reference

AES CBC, CCMP, KW, KWP,
GCM, CCM, XTS FIPS 197, SP 800-38A/C/D/E/F FCS_COP.1/ENCRYPT

SHA-1, SHA-256, SHA384,
SHA512 FIPS 180-4 FCS_COP.1/HASH

RSA, ECDSA FIPS SP 186-4
FCS_COP.1/SIGN
FCS_CKM.1

HMAC-SHA-1, HMAC-SHA-256,
HMAC-SHA-384, HMAC-SHA-
512

FIPS 198-1 & 180-4 FCS_COP.1/KEYHMAC

RSA, ECDSA SP800-56A/B FCS_CKM.2/UNLOCKED

 62

FCS_CKM.2/LOCKED

DRBG FIPS SP 800-90A FCS_RBG_EXT.1

The Cryptographic support function in the TOE is designed to fulfill the following security functional
requirements:
PP_MDF_V3.3: FCS_CKM.1: The TOE provides generation of asymmetric keys including:

Table 12: Asymmetric Key Generation

Algorithm Key Sizes / Curves Usage

RSA, FIPS 186-4 2048/3072/4096 API / Application & Sensitive Data
Protection (DAR.2)

ECDSA, FIPS 186-4 P-256/384 API / Application

ECDHE (not domain
parameters) P-256/384 TLS Key exchange (WPA2/WPA3 with

EAP-TLS & HTTPS)

All the cryptographic algorithms that provided by the AP have NIST CAVP certificates, which are listed in
the tables of FCS_COP.1, other algorithms provided by BoringSSL have also been tested with the NIST
ACVTS system.
TOE provides key generation APIs to mobile applications to allow them to generate RSA/ECDSA key pairs.
The TOE generates only ECDH key pairs (as BoringSSL does not support DH/DHE cipher suites) and does
not generate domain parameters (curves) for use in TLS Key Exchange.
MOD_WLAN_CLI_V1.0: FCS_CKM.1/WPA: The TOE adheres to IEEE 802.11-2012 and IEEE 802.11ac-
2014 for key generation. The TOE’s wpa_supplicant provides PRF384 and PRF704 for WPA2/WPA3
derivation of 128-bit and 256-bit AES Temporal Keys (using the HMAC implementation provided by
BoringSSL) and employs its BoringSSL AES-256 DRBG when generating random values used in the EAP-
TLS and 802.11 4-way handshake. The TOE supports the AES-128 CCMP and AES-256 GCMP encryption
modes.
PP_MDF_V3.3: FCS_CKM.2/UNLOCKED: The TOE performs key establishment as part of EAP-TLS and
TLS session establishment. Table 12 Asymmetric Key Generation enumerates the TOE’s supported key
establishment implementations (RSA/ECDH for TLS/EAP-TLS). When the TOE acts as a TLS client, the TOE
only performs 800-56B encryption when participating in TLS_RSA_* based TLS handshakes. Thus, the
TOE does not perform 800-56B decryption.
PP_MDF_V3.3: FCS_CKM.2/LOCKED: The TOE provides the SDP (Sensitive DATA Protection) library for
applications which implements 2048 bits RSA based key establishment scheme. Applications can utilize
this library to encrypt incoming data received during lock state without leaking any information related
to key or received data.
MOD_WLAN_CLI_V1.0: FCS_CKM.2/WLAN: The TOE adheres to RFC 3394 and 802.11-2012 standards
and unwraps the GTK (sent encrypted with the WPA2/WPA3 KEK using AES Key Wrap in an EAPOL-Key
frame). Upon receiving an EAPOL frame, the TOE will subject the frame to a number of checks (frame
length, EAPOL version, frame payload size, EAPOL-Key type, key data length, EAPOL-Key CCMP
descriptor version, and replay counter) to ensure a proper EAPOL message and then decrypt the GTK
using the KEK, thus ensuring that it does not expose the Group Temporal Key (GTK).
PP_MDF_V3.3: FCS_CKM_EXT.1: The TOE includes a Root Encryption Key (REK) stored in a 256-bit
fuse bank within the AP. The TOE generates the REK/fuse value during manufacturing using its hardware
DRBG. The application processor protects the REK by preventing any direct observation of the value and
prohibiting any ability to modify or update the value. The application processor loads the fuse value into
an internal hardware crypto register and the Trusted Execution Environment (TEE) provides trusted
applications the ability to derive KEKs from the REK (using an SP 800-108 KDF to combine the REK with
a salt). Additionally, the when the REK is loaded, the fuses for the REK become locked, preventing any

 63

further changing or loading of the REK value. The TEE does not allow trusted applications to use the REK
for encryption or decryption, only the ability to derive a KEK from the REK. The TOE includes a TEE
application that calls into the TEE in order to derive a KEK from the 256-bit REK/fuse value and then only
permits use of the derived KEK for encryption and decryption as part of the TOE key hierarchy.
PP_MDF_V3.3: FCS_CKM_EXT.2: The TOE utilizes its approved RBGs to generate DEKs. When
generating AES keys for itself (for example, the TOE’s sensitive data encryption keys or for the Secure
Key Storage), TEE will call qsee_prng_getdata() API to generate a 256-bit AES key. The TOE utilizes the
RAND_bytes() API call from its BoringSSL AES-256 CTR_DRBG to generate a 256-bit AES key. The TOE
also utilizes that same DRBG when servicing API requests from mobile applications wishing to generate
AES keys (either 128 or 256-bit).
When generating keys, DRBG is fed in with 384 bits length of entropy input, based on the entropy
analysis, this 384 bits stream contains more than 256-bits entropy which is the maximum length of the
generated keys, which could ensure that the TOE generates DEKs with sufficient entropy, the generated
key cannot be recovered with less work than a full exhaustive search of the key space.
PP_MDF_V3.3: FCS_CKM_EXT.3: The TOE takes the user-entered password and conditions/stretches
this value before combining the factor with other KEK. The TOE generates all non-derived KEKs using the
RAND_bytes() API call from its BoringSSL AES-256 CTR_DRBG to ensure a full 112/256-bits of strength
for asymmetric/symmetric keys, respectively. And the TOE combines KEKs by encrypting one KEK with
the other so as to preserve entropy.
PP_MDF_V3.3: FCS_CKM_EXT.4: The TOE clears sensitive cryptographic material (plaintext keys,
authentication data, and other security parameters) from volatile memory when no longer needed or
when transitioning to the device’s locked state (in the case of the Sensitive Data Protection keys). Public
keys (such as the one used for Sensitive Data Protection) can remain in memory when the phone is
locked, but all crypto-related private keys are evicted from memory upon device lock. No plaintext
cryptographic material resides in the TOE’s Flash as the TOE encrypts all keys stored in Flash. When
performing a full wipe of protected data, the TOE cryptographically erases the protected data by clearing
the Data-At-Rest DEK. Because the TOE’s keystore resides within the user data partition, the TOE
effectively cryptographically erases those keys when clearing the Data-At-Rest DEK. In turn, the TOE
clears the Data-At-Rest DEK and Secure Key Storage KEK through a secure direct overwrite
(BLKSECDISCARD ioctl) of the wear-leveled Flash memory containing the key followed by a read-verify.
Document “vivo X Fold2 Key Hierarchy Description” further explains how each type of plaintext key
material is generated, stored and cleared.
PP_MDF_V3.3: FCS_CKM_EXT.5: The TOE stores all protected data in encrypted form within the user
data partition (either protected data or sensitive data). Upon request, the TOE cryptographically erases
the Data-At-Rest DEK protecting the user data partition and the Sensitive Data Protection DEKs
protecting sensitive data files in the user data partition by overwrite the DEK, KEK, and then clears those
keys from memory, reformats the partition, and then reboots. The TOE’s clearing of the keys follows the
requirements of FCS_CKM_EXT.4. Document “vivo X Fold2 Key Hierarchy Description” further explains
how each type of plaintext key material is generated, stored and cleared.
PP_MDF_V3.3: FCS_CKM_EXT.6: The TOE generates all salts by using its DRBG described in
FCS_RBG_EXT.1.

Table 13: Salt Generation

Salt value and size Used RBG Storage

User password salt (128-bit) BoringSSL’s AES-256 CTR_DRBG Flash filesystem

TLS client_random (256-bit) BoringSSL’s AES-256 CTR_DRBG N/A (ephemeral)

TLS pre_master_secret (384-bit) BoringSSL’s AES-256 CTR_DRBG N/A (ephemeral)

TLS ECDHE private value (256,
384) BoringSSL’s AES-256 CTR_DRBG N/A (ephemeral)

WPA2 4-way handshake
supplicant nonce (SNonce) BoringSSL’s AES-256 CTR_DRBG N/A (ephemeral)

 64

WPA3 4-way handshake
supplicant nonce (SNonce) BoringSSL’s AES-256 CTR_DRBG N/A (ephemeral)

MOD_BT_V1.0: FCS_CKM_EXT.8: The TSF generates public/private ECDH key pairs for Bluetooth every
paring to protect the data that are exchanged between TOE and the paired device.
PP_MDF_V3.3: FCS_COP.1: The TOE implements cryptographic algorithms in accordance with the
following NIST standards and has received the following CAVP algorithm certificates.
The TOE’s BoringSSL library (0x1010107f) provides the following cryptographic algorithms:

Table 14: Cryptographic Algorithms Provided by BoringSSL

SFR Algorithm Standard

FCS_CKM.1 (Key Gen) RSA/ECDSA FIPS186-4

FCS_CKM.2 (Key
Establishment)

ECDSA-based Key exchange,
RSA-based Key exchange

SP800-56A
SP800-56B

FCS_COP.1/ENCRYPT
(AES) AES CBC, CCMP, KW, KWP, GCM, CCM, XTS FIPS 197, SP800-

38A/C/D/E/F

FCS_COP.1/HASH (Hash) SHA-1, SHA-256/384/512 FIPS 180-4

FCS_COP.1/SIGN
(Sign/Verify)

RSA/ECDSA Signature generation and
verification FIPS 186-4

FCS_COP.1/KEYHMAC
(Keyed Hash)

HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-
384. HMAC-SHA-512 FIPS198-1

FCS_RBG_EXT.1
(Random)

CTR_DRBG
Hash_DRBG

SP800-90A

The TOE’s Wi-Fi chipset (WCN7851) provides an AES-CCMP implementation:

Table 15: Cryptographic Algorithms Provided by Wi-Fi chipset

SFR Module Algorithm Standard Certificates

FCS_COP.1/
ENCRYPT (AES)

Wi-Fi chipset (WCN7851) AES 128/256
CCMP

FIPS 197,
SP 800-
38C

A3235

The TOE’s AP provides the following cryptographic algorithms:

Table 16: Cryptographic Algorithms Provided by Application Processor

SFR Module Algorithm Standard Certificates

FCS_COP.1/
ENCRYPT (AES)

Qualcomm(R) Crypto Engine
Core

AES 128/256
CBC

FIPS 197,
SP 800-
38A

A2908

FCS_COP.1/
ENCRYPT (AES)

Qualcomm (R) Inline Crypto
Engine (UFS) Encryption
(ENCRYPT)

AES 128/256
XTS

FIPS 197,
SP 800-
38E

A2886
A2887

 65

Qualcomm (R) Inline Crypto
Engine (UFS) Decryption
(DECRYPT)

FCS_COP.1/
HASH (Hash)

Qualcomm(R) Crypto Engine
Core

SHA 1/256
Hashing

FIPS 180-
4 A2908

FCS_COP.1/
KEYHMAC (Keyed
Hash)

Qualcomm(R) Crypto Engine
Core

HMAC-SHA-
1/256

FIPS 198-
1, FIPS
180-4

A2908

FCS_RBG_EXT.1
(Random) (DRBG)

Qualcomm(R) Pseudo Random
Number Generator (DRBG)

DRBG Bit
Generation

SP 800-
90A
(Hash-
256)

A2945

FCS_CKM_EXT.3
Qualcomm(R) Trusted Execution
Environment Kernel Software
Crypto APIs (KERNEL)

KBKDF SP 800-
108 A2950

The TOE’s BoringSSL library supports the TOE’s cryptographic Android Runtime (ART) methods (through
Android's conscrypt JNI provider) afforded to mobile applications and also supports Android user-space
processes and daemons (e.g., wpa_supplicant). The TOE’s Application Processor provides hardware
accelerated cryptography utilized in Data-At-Rest (DAR) encryption of the user data partition.
The TOE stretches the user’s password to create a password derived key. The TOE stretching function
uses a series of steps to increase the memory required for key derivation (thus thwarting GPU-
acceleration, off-line brute force, and precomputed dictionary attacks) and ensure proper conditioning
and stretching of the user’s password.
The TOE conditions the user’s password using two iterations of PBKDF2 with HMAC-SHA-256 in addition
to some ROMix operations in an algorithm named scrypt. Scrypt consists of one iteration of PBKDF2,
followed by a series of ROMix operations, and finished with a final iteration of PBKDF2. The ROMix
operations increase the memory required for key derivation, thus thwarting GPU-acceleration (which can
greatly decrease the time needed to brute force PBKDF2 alone).
The following scrypt diagram shows how the password and salt are used with PBKDF v2 and ROMix to
fulfil the requirements for password conditioning.

 66

Figure 1: Password conditioning diagram

The resulting derived key from this operation is used to decrypt the File-based Encryption (FBE) DEK
(document “vivo X Fold2 Key Hierarchy Description” further explains on how this key is used in FBE)
and to decrypt the Software based protected key.
The TOE uses HMAC as part of the TLS ciphersuites and makes HMAC functionality available to mobile
applications. For TLS, the TOE uses HMAC using SHA-1 (with a 160-bit key) to generate a 160-bit MAC,
SHA-256 (with a 256-bit key) to generate a 256-bit MAC, SHA-384 (with a 384-bit key) to generate a
384-bit MAC. For mobile applications, the TOE provides all of the previous HMACs as well as SHA-512
(with a 512-bit key) to generate a 512-bit MAC. FIPS 198-1 & 180-4 dictate the block size used, and
they specify block sizes/output MAC lengths of 512/160, 512/256, 1024/384, and 1024/512-bits for
HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 respectively.
The TOE uses SHA together with algorithms in FCS_COP.1/SIGN for digital signature generation and
verification, SHA-1 is used to generate 160-bit message digest, SHA-256, SHA-384 and SHA512 are
used to generate 256-bit, 384-bit and 512-bit message digests respectively. The TOE also uses SHA
with algorithms in FCS_COP.1/KEYHMAC and FCS_COP.1/CONDITION for the hash value generation.
PP_MDF_V3.3: FCS_HTTPS_EXT.1: The TOE supports the HTTPS protocol (compliant with RFC 2818)
so that (mobile and system) applications executing on the TOE can act as HTTPS clients and securely
connect to external servers using HTTPS. Administrators have no credentials and cannot use HTTPS or
TLS to establish administrative sessions with the TOE as the TOE does not provide any such capabilities.
The TOE does not establish the connection if the peer certificate is deemed invalid, and notify to the
application that making the HTTPS connection.
PP_MDF_V3.3: FCS_IV_EXT.1: The TOE generates IVs by get random values from its DRBG for use with
all keys, which is compliance with the requirements of “Table 11: References and IV Requirements for
NIST-approved Cipher Modes” of PP_MDF_V3.3.
PP_MDF_V3.3: FCS_RBG_EXT.1: The TOE provides two RBGs including:

1. A SHA-256 Hash_DRBG provided in the hardware of the AP.
2. An AES-256 CTR_DRBG provided by BoringSSL.

The AES-256 CTR_DRBG that comes with BoringSSL is the only RBG present in the OriginOS and available
for other user applications that running upon the OS. As such, the TOE provides mobile applications
access (through an Android Java API) to random data drawn from its AES-256 CTR_DRBG.

 67

The TOE seeds the Hash_DRBG of Application Processor with its hardware noise source to ensure at least
256-bits of entropy. The TOE then uses the output of Hash_DRBG to continuously fill the Linux Kernel
Random Number Generator (LKRNG) input pool, then the TOE seeds its BoringSSL AES-256 CTR_DRBG
using 384-bits of data from /dev/random, which get data from the LKRNG input pool, thus ensuring at
least 256-bits of entropy can be got for the generated random numbers. The TOE uses its BoringSSL
DRBG for all random generation including keys, IVs and salts.
PP_MDF_V3.3: FCS_SRV_EXT.1: The TOE provides applications access to the cryptographic operations
including encryption (AES), hashing (SHA), signing and verification (RSA & ECDSA), key hashing (HMAC),
generation of asymmetric keys for key establishment (RSA and ECDH), and generation of asymmetric
keys for signature generation and verification (RSA, ECDSA). The TOE provides access through the
Android operating system’s Java API, through the native BoringSSL API, and through the application
processor module (user and kernel) APIs.
PP_MDF_V3.3: FCS_STG_EXT.1: The TOE provides the user, administrator, and mobile applications
the ability to import and use asymmetric public and private keys into the TOE’s software-based Secure
Key Storage. Certificates are stored in files using UID-based permissions and an API virtualizes the
access. Additionally, the user and administrator can request the TOE to destroy the keys stored in the
Secure Key Storage.
While normally mobile applications cannot use or destroy the keys of another application, applications
that share a common application developer (and are thus signed by the same developer key) may do
so. In other words, applications with a common developer (and which explicitly declare a shared UUID
in their application manifest) may use and destroy each other’s keys located within the Secure Key
Storage.
The TOE also provides additional protections on keys beyond including key attestation, to allow
enterprises and application developers the ability to ensure which keys have been generated securely
within the phone.
Document “vivo X Fold2 Key Hierarchy Description” further explains how each type of plaintext key
material is generated, stored and cleared.
PP_MDF_V3.3: FCS_STG_EXT.2: The TOE employs a key hierarchy that protects all DEKs, KEKs and all
software-based key storage, see document “vivo X Fold2 Key Hierarchy Description” for more
information.
All keys are 256-bits in size. All keys are generated using the TOE’s BoringSSL AES-256 CTR_DRBG or
application processor SHA-256 Hash_DRBG. By utilizing only 256-bit KEKs, the TOE ensures that all keys
are encrypted by an equal or larger sized key.
In the case of Wi-Fi, the TOE utilizes the 802.11-2012 KCK and KEK keys to unwrap (decrypt) the
WPA2/WPA3 Group Temporal Key received from the access point.
PP_MDF_V3.3: FCS_STG_EXT.3: The TOE protects the integrity of all DEKs and KEKs (other than
LTTCKM keys) stored in Flash by using authenticated encryption/decryption methods (GCM).
TLS_PKG_V1.1: FCS_TLS_EXT.1: The TOE acts as the TLS client.
TLS_PKG_V1.1: FCS_TLSC_EXT.1/2: The TOE provides mobile applications (through its Android API)
the use of TLS version 1.1 and 1.2 together with the ciphersuites defined in Section 6.1.2.26 to all the
applications that running on the OriginOS, and the TOE requires no configuration other than using the
appropriate library APIs as described in the Admin Guidance. The TOE also supports to import certificate
for the applications use.
When an application uses the APIs provided in the Admin Guide to attempt to establish a trusted channel
connection based on TLS or HTTPS, the TOE supports only Subject Alternative Name (SAN) (DNS and IP
address) as reference identifiers (the TOE does not accept reference identifiers in the Common
Name[CN]). The TOE supports client (mutual) authentication using X.509v3 certificates, and there is no
other factors beyond configuration that are necessary in order for the client to engage in mutual
authentication. The TOE in its evaluated configuration and, by design, supports elliptic curves for TLS (P-
256 & P-384) and has a fixed set of supported curves (thus the admin cannot and need not configure
any curves).
No additional configuration is needed to restrict allow the device to use the supported cipher suites, as
only the claimed cipher suites are supported in the aforementioned library as each of the aforementioned
ciphersuites are supported on the TOE by default or through the use of the TLS library.

 68

While the TOE supports the use of wildcards in X.509 reference identifiers (SAN and CN), the TOE does
not support certificate pinning. If the TOE cannot determine the revocation status of a peer certificate,
the TOE rejects the certificate and rejects the connection.
MOD_WLAN_CLI_V1.0: FCS_TLSC_EXT.1/WLAN: The TSF supports TLS versions 1.1, and 1.2 and also
supports the selected ciphersuites utilizing SHA-256, and SHA-384 (see the selections in section 6 for
FCS_TLSC_EXT.1/WLAN) for use with EAP-TLS as part of WPA2/WPA3. The TOE in its evaluated
configuration and, by design, supports only evaluated elliptic curves (P-256 and P-384) and has a fixed
set of supported curves (thus the administrator cannot and need not configure any curves).
Below is the list of ciphersuites that supported by the TOE:

• TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,
• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

The TOE allows the user to load and utilize authentication certificates for EAP-TLS used with WPA. The
Android UI (Settings->Security->Credential storage: Install from device storage) allows the user to
import an RSA or ECDSA certificate and designate its use as Wi-Fi.
MOD_WLAN_CLI_V1.0: FCS_TLSC_EXT.2/WLAN: The Supported Elliptic Curves Extension (secp256r1,
secp384r1) is included by the TOE in the client hello message by default .
TLS_PKG_V1.1: FCS_TLSC_EXT.4: The TOE support secure renegotiation in accordance with RFC 5746.
Rehandsharking SSL engine URL:

https://developer.android.com/reference/javax/net/ssl/SSLEngine
TLS_PKG_V1.1: FCS_TLSC_EXT.5: The Supported Elliptic Curves Extension (secp256r1, secp384r1) is
included by the TOE in the client hello message by default.
MOD_WLAN_CLI_V1.0: FCS_WPA_EXT.1.1: The TOE supports both WPA2 and WPA3 security type

7.3 User Data Protection
The User data protection function is designed to fulfill the following security functional requirements:
PP_MDF_V3.3: FDP_ACF_EXT.1: The TOE provides the following categories of system services to
applications:

1. Normal - A lower-risk permission that gives an application access to isolated
application-level features, with minimal risk to other applications, the system, or
the user. The system automatically grants this type of permission to a requesting
application at installation, without asking for the user's explicit approval (though
the user always has the option to review these permissions before installing).
An example of a normal permission is the ability to vibrate the device:
android.permission.VIBRATE. This permission allows an application to make the
device vibrate, and an application that does not request (or declare) this
permission would have its vibration requests ignored.

2. Dangerous - A higher-risk permission that would give a requesting application
access to private user data or control over the device that can negatively impact
the user. Because this type of permission introduces potential risk, the system
cannot automatically grant it to the requesting application. For example, any
dangerous permissions requested by an application will be displayed to the user
and require confirmation before proceeding or some other approach can be taken
to avoid the user automatically allowing the use of such facilities.
An example of a dangerous privilege would be access to location services to
determine the location of the mobile device:
android.permission.ACCESS_FINE_LOCATION. The TOE controls access to
Dangerous permissions during the running of the application. The TOE prompts
the user to review the application’s requested permissions (by displaying a
description of each permission group, into which individual permissions map, that
an application requested access to). If the user approves, then the application is

 69

allowed to continue running. If the user disapproves, the devices continues to run,
but cannot use the services protected by the denied permissions. Thereafter, the
mobile device grants that application during execution access to the set of
permissions declared in its Manifest file.

3. Signature - A permission that the system is to grant only if the requesting
application is signed with the same certificate as the application that declared the
permission. If the certificates match, the system automatically grants the
permission without notifying the user or asking for the user's explicit approval.
An example of a signature permission is the
android.permission.BIND_VPN_SERVICE that an application must declare in order to
utilize the VpnService APIs of the device. Because the permission is a Signature
permission, the mobile device only grants this permission to an application (2nd
installed app) that requests this permission and that has been signed with the
same developer key used to sign the application (1st installed app) declaring the
permission (in the case of the example, the Android Framework itself).

4. Signature|System - A permission that the system is to grant only to packages in
the Android system image or that are signed with the same certificates. Please
avoid using this option, as the signature protection level should be sufficient for
most needs and works regardless of exactly where applications are installed. This
permission is used for certain special situations where multiple vendors have
applications built into a system image which need to share specific features
explicitly because they are being built together.
An example of a Signature|System permission is the
android.permission.LOCATION_HARDWARE, which allows an application to use
location features in hardware (such as the geofencing API). The device grants this
permission to requesting applications that either have been signed with the same
developer key used to sign the Android application declaring the permissions or
that reside in the “system” directory within Android (which for Android 4.4
and above, are applications residing in the /system/priv-app/ directory on the read-
only system partition). Put another way, the device grants systemOrSignature
permissions by Signature or by virtue of the requesting application being part of
the “system image”.

Additionally, Android includes the following flags that layer atop the base categories.
1. privileged - this permission can also be granted to any applications installed as

privileged apps on the system image. Please avoid using this option, as the
signature protection level should be sufficient for most needs and works regardless
of exactly where applications are installed. This permission flag is used for certain
special situations where multiple vendors have applications built into a system
image which need to share specific features explicitly because they are being built
together.

2. system - Old synonym for 'privileged'.
3. development - this permission can also (optionally) be granted to development

applications (e.g., to allow additional location reporting during beta testing).
4. appop - this permission is closely associated with an app op for controlling access.
5. pre23 - this permission can be automatically granted to apps that target API levels

below API level 23 (Marshmallow/6.0).
6. installer - this permission can be automatically granted to system apps that install

packages.
7. verifier - this permission can be automatically granted to system apps that verify

packages.
8. preinstalled - this permission can be automatically granted to any application pre-

installed on the system image (not just privileged apps) (the TOE does not prompt
the user to approve the permission).

For older applications (those targeting Android’s pre-23 API level, i.e., API level 22 [lollipop] and below),
the TOE will prompt a user at the time of application installation whether they agree to grant the
application access to the requested services. Thereafter (each time the application is run), the TOE will
grant the application access to the services specified during install.

 70

For newer applications (those targeting API level 23 or later), the TOE grants individual permissions at
application run-time by prompting the user for confirmation of each permissions category requested by
the application (and only granting the permission if the user chooses to grant it).
The Android 13.0 (Level 32) API (https://developer.android.com/about/versions/13/features) provides a
description of the services available to mobile applications.
While Android provides a large number of individual permissions, they are generally grouped into
categories or features that provide similar functionality. Below table shows a series of functional
categories centered on common functionality.

Table 17: Function Categories

Service Features Description

Sensitive I/O Devices & Sensors Location services, Audio & Video capture, Body
sensors

User Personal Information & Credentials Contacts, Calendar, Call logs, SMS

Metadata & Device ID Information IMEI, Phone Number

Data Storage Protection App data, App cache

System Settings & Application
Management

Date time, Reboot/Shutdown, Sleep, Force-close
application, Administrator Enrollment

Wi-Fi, Bluetooth, USB Access Wi-Fi, Bluetooth, USB tethering, debugging and file
transfer

Mobile Device Management &
Administration

MDM APIs

Peripheral Hardware NFC, Camera, Headphones

Security & Encryption Certificate/Key Management, Password,
Revocation rules

Applications with a common developer have the ability to allow sharing of data between their
applications. A common application developer can sign their generated APK with a common certificate
or key and set the permissions of their application to allow data sharing. When the different applications’
signatures match and the proper permissions are enabled, information can then be shared as needed.
The TOE supports Enterprise profiles to provide additional separation between application and
application data belonging to the Enterprise profile. Applications installed into the Enterprise versus
Personal profiles cannot access each other’s secure data, applications, and can have separate device
administrators/managers. This functionality is built into the device by default and does not require an
application download. The Enterprise administrative app (an MDM agent application installed into the
Enterprise Profile) may enable cross-profile contacts search, in which case, the device owner can search
the address book of the enterprise profile. Please see the Admin Guide listed in Section1.4.3 of this
document for additional details regarding how to set up and use Enterprise profiles. Ultimately, the
enterprise profile is under control of the personal profile. The personal profile can decide to remove the
enterprise profile, thus deleting all information and applications stored within the enterprise profile.
However, despite the “control” of the personal profile, the personal profile cannot dictate the enterprise
profile to share applications or data with the personal profile; the enterprise profile MDM must allow for
sharing of contacts before any information can be shared.
PP_MDF_V3.3: FDP_ACF_EXT.2: The TOE allows an administrator to allow sharing of the enterprise
profile address book with the normal profile. Each application group (profile) has its own calendar as well
as keychain (keychain is the collection of user [not application] keys, and only the user can grant the
user’s applications access to use a given key in the user’s keychain), thus the personal and work profiles
do not share calendar appointments nor keys.

 71

PP_MDF_V3.3: FDP_DAR_EXT.1: The TOE provides Data-At-Rest AES-256 XTS hardware encryption
(also known as FBE) for all data stored on the TOE in the user data partition (which includes both user
data and TSF data). FBE provide the Credential Encrypted (CE) storage locations available to
applications, which is the default storage location and only available after the user has unlocked the
device.
The TOE also has TSF data relating to key storage for TSF keys not stored in the system’s Android
Keystore. The TOE separately encrypts those TSF keys and data. Additionally, the TOE includes a read-
only filesystem in which the TOE’s system executables, libraries, and their configuration data reside. For
its Data-At-Rest encryption of the data partition on the internal Flash (where the TOE stores all user data
and all application data), the TOE uses an AES-256 bit DEK with XTS feedback mode to encrypt each file
in the data partition using dedicated application processor hardware.
PP_MDF_V3.3: FDP_DAR_EXT.2: The TOE provides a dedicated software library for Sensitive Data
Protection (SDP) purpose. Developers shall invoke this SDP library for any sensitive data received. The
library invokes Keystore to generate RSA key pair (KEK_SDP_PRI_KEY and KEK_SDP_PUB_KEY) and an
AES symmetric key (KEK_SDP_UNLOCK_KEY) as the KEK for the SDP encryption process. When an
application receives incoming sensitive data while the device is locked, an AES symmetric DEK is
generated randomly to encrypt that data. The public key of the RSA KEK is then used to encrypt the AES
DEK. Once the device is unlocked, the RSA private key is decrypted and can be then used to decrypt the
AES DEK which is stored beside the sensitive data and both in ciphertext format. Once the AES DEK is
decrypted, the TOE uses it to decrypt the sensitive data and re-encrypt them with the new AES DEK.
When an application receives incoming sensitive data while the device is unlocked, a random AES
symmetric DEK will be generated to encrypt the sensitive data, and then the AES DEK will be encrypted
using the AES KEK.
PP_MDF_V3.3: FDP_IFC_EXT.1: The TOE supports the installation of VPN Client applications, which
ensures all traffics go through the VPN tunnel with below two exceptions:
l traffic necessary to establish the VPN connection
l traffic needed for correct functioning of the TOE
The TOE routes all packets through the kernel’s IPsec interface (ipsec0) when the VPN is active. When
the kernel routes these data packets, it will determine whether to protect, bypass or discard according
to the policy configured by the user.
There is no difference in the routing of IP traffic when using any supported baseband protocols (e.g. Wi-
Fi or, LTE). The only exception to all traffic being routed to the VPN is in the instance of ICMP echo
requests. The TOE uses ICMP echo responses on the local subnet to facilitate network troubleshooting
and categorizes it as a part of ARP. As such, if an ICMP echo request is issued on the subnet the TOE is
part of, it will respond with an ICMP echo response, but no other instances of traffic will be routed outside
of the VPN.
PP_MDF_V3.3: FDP_STG_EXT.1: The TOE’s Trusted Anchor Database consists of the built-in certs and
any additional user or admin/MDM loaded certificates. The built-in certs are individually stored in the
device’s read-only system image in the /system/etc/security/cacerts directory, and the user can
individually disable certs through Android’s user interface [Settings->Security-> Trusted Credentials].
Because the built-in CA certificates reside on the read-only system partition, the TOE places a copy of
any disabled built-in certificate into the /data/misc/user/X/cacerts- removed/ directory, where 'X'
represents the user’s number (which starts at 0).
The TOE stores added CA certificates in the corresponding /data/misc/user/X/cacerts-added/ directory
and also stores a copy of the CA certificate in the user’s Secure Key Storage (residing in the
/data/misc/keystore/user_X/ directory). The TOE uses Linux file permissions that prevent any mobile
application or entity other than the TSF from modifying these files. Only applications registered as an
administrator (such as an MDM Agent Application) have the ability to access these files, staying in
accordance to the permissions established in FMT_SMF.1 and FMT_MOF_EXT.1.
PP_MDF_V3.3: FDP_UPC_EXT.1/APPS: The TOE provides APIs allowing non-TSF applications (mobile
applications) the ability to establish a secure channel using TLS, HTTPS, and Bluetooth BR/EDR and LE.
Mobile applications can use the following Android APIs for TLS, HTTPS, and Bluetooth respectively:

1. javax.net.ssl.SSLContex
http://developer.android.com/reference/javax/net/ssl/SSLContext.html

2. javax.net.ssl.HttpsURLConnection
http://developer.android.com/reference/javax/net/ssl/HttpsURLConnection.html

 72

3. android.bluetooth
http://developer.android.com/reference/android/bluetooth/package-summary.html

7.4 Identification and Authentication
The Identification and authentication functions are designed to fulfill the following security functional
requirements:
PP_MDF_V3.3: FIA_AFL_EXT.1: The TOE maintains in persistent storage, for each user, the number of
failed password logins since the last successful login, and upon reaching the maximum number of
incorrect logins, the TOE performs a full wipe of all protected data (and in fact, wipes all user data). An
administrator can adjust the number of failed logins for the cryptlock screen from the default of 10 failed
logins to a value between 0 (deactivate wiping) and 50 through an MDM. The TOE validates passwords
by providing them to Android’s Gatekeeper (which runs in the Trusted Execution Environment). If the
presented password fails to validate, the TOE increments the incorrect password counter before
displaying a visual error to the user. Android’s Gatekeeper keeps this password counter in persistent
secure storage and increments the counter before validating the password. Upon successful validation
of the password, this counter is reset back to zero. By storing the counter persistently, and by
incrementing the counter prior to validating it, the TOE ensures a correct tally of failed attempts even if
it loses power.
MOD_BT_V1.0: FIA_BLT_EXT.1: The TOE requires explicit user authorization before it will pair with a
remote Bluetooth device. When pairing with another device, the TOE requires that the user either
confirm that a displayed numeric passcode matches between the two devices or that the user enter (or
choose) a numeric passcode that the peer device generates (or must enter). The TOE requires this
authorization (via manual input) for mobile application use of the Bluetooth trusted channel and in
situations where temporary (non-bonded) connections are formed.
MOD_BT_V1.0: FIA_BLT_EXT.2: The TOE prevents data transfer of any type until Bluetooth pairing has
completed, there is no RFCOMM nor L2CAP data transfer can occur before pairing. Additionally, the TOE
supports OBEX (OBject EXchange) through L2CAP (Logical Link Control and Adaptation Protocol).
MOD_BT_V1.0: FIA_BLT_EXT.3: The TOE rejects duplicate Bluetooth connections by only allowing a
single session per paired device. This ensures that when the TOE receives a duplicate session attempt
while the TOE already has an active session with that device, then the TOE ignores the duplicate session.
MOD_BT_V1.0: FIA_BLT_EXT.4: The TOE’s Bluetooth host and controller supports Bluetooth Secure
Simple Pairing and the TOE utilizes this pairing method when the remote host also supports it.
Secure Simple Paring follows these phases:

1. generate ECDH key and exchange public key through ECDH procedure
2. negotiate authentication protocol
3. authenticate peer device
4. derive BR/EDR or LE shared link key

MOD_BT_V1.0: FIA_BLT_EXT.6: The TOE requires explicit user authorization before granting trusted
remote devices access to services associated with the Bluetooth profiles, including OPP, MAP, PBAP and
SAP. Additionally, the TOE requires explicit user authorization before granting untrusted remote devices
access to services associated with all available profiles.
OPP will pair after the end user agrees to the pairing. After the pairing is completed, the TOE will pop a
notification when trusted remote device transmits a file to the TOE and the user needs to agree again.
Every time the TOE gets a “receive file” action, it needs user’s consent.
MAP will pair after the end user agrees to the pairing. After the pairing is completed, the TOE will pop a
notification that prompts to access MAP service and the user needs to agree again. Once it is agreed,
the trust remote device can access MAP every time without user’s further consent.
PBAP will pair after the end user agrees to the pairing. After the pairing is completed, the TOE will pop a
notification that prompts to access PBAP service and the user needs to agree again. Once it is agreed,
the trust remote device can access PBAP every time without user’s further consent.
SAP will pair after the end user agrees to the pairing. After the pairing is completed, the TOE will pop a
notification that prompts to access SAP service and the user needs to agree again. Once it is agreed, the
trust remote device can access SAP every time without user’s further consent.

 73

MOD_BT_V1.0: FIA_BLT_EXT.7: The TOE requires explicit user authorization before granting untrusted
remote devices access to services associated with all available profile.
MOD_WLAN_CLI_V1.0: FIA_PAE_EXT.1: The TOE can join WPA2/WPA3 wireless networks requiring
EAP-TLS authentication, acting as a client/supplicant (and in that role connect to the 802.11 access point
and communicate with the 802.1X authentication server).
PP_MDF_V3.3: FIA_PMG_EXT.1: The TOE authenticates the user through a password consisting of
basic Latin characters (upper and lower case, numbers, and the special characters noted in
FIA_PMG_EXT.1). The TOE defaults to requiring passwords to have a minimum of four characters but no
more than sixteen, contain at least one letter; however, an MDM application can change these defaults.
The Smart Lock feature is not allowed in the evaluated config as this feature circumvents the
requirements for FIA_PMG_EXT.1 and many others.
PP_MDF_V3.3: FIA_TRT_EXT.1: The TOE limits the number of authentication attempts through the UI
to no more than 5 attempts within 30 seconds. Thus if the current [the nth] and prior four authentication
attempts have failed, and the (n - 4)th attempt was less than 30 second ago, the TOE will prevent any
further authentication attempts until 30 seconds has elapsed. Note as well that the TOE will wipe itself
when it reaches the maximum number of unsuccessful authentication attempts (as described in
FIA_AFL_EXT.1 above).
PP_MDF_V3.3: FIA_UAU.5: The TOE allows the user to authenticate using a password. Upon boot, the
first unlock screen presented requires the user to enter their password to unlock the device.
Upon device lock during normal use of the device, the user has the ability to unlock the phone by entering
their password. The TOE verifies user’s password by sending hash of the password to the TEE.
FIA_PMG_EXT.1 describes the password authentication process and its security measures.
Some security related user settings (e.g. changing the password, SmartLock settings, etc.) and actions
(e.g. factory reset) require the user to enter their password before modifying these settings or executing
these actions.
The TOE’s evaluated configuration disallows other authentication mechanisms, such as PIN, Biometric
or Smart Lock mechanisms (on-body detection, trusted places, trusted devices, trusted voice).
PP_MDF_V3.3: FIA_UAU.6/CREDENTIAL and FIA_UAU.6/LOCKED: The TOE requires the user to
enter their password in order to unlock the TOE. The TOE can disable Smart Lock through management
controls. Only after entering their current user password the user then can elect to change their
password.
PP_MDF_V3.3: FIA_UAU.7: The TOE allows the user to enter the user's password from the lock screen.
The TOE will, by default, display the most recently entered character of the password briefly or until the
user enters the next character in the password, at which point the TOE obscures the character by
replacing the character with a dot symbol.
PP_MDF_V3.3: FIA_UAU_EXT.1: As described before, the TOE’s key hierarchy requires the user's
password in order to derive the KEK_* keys in order to decrypt other KEKs and DEKs. Thus, until it has
the user's password, the TOE cannot decrypt the DEK utilized for Data-At-Rest encryption, and thus
cannot decrypt the user’s protected data.
PP_MDF_V3.3: FIA_UAU_EXT.2: The TOE allows a user to perform the actions assigned in
FIA_UAU_EXT.2.1 without first successfully authenticating.
Actions that may access internal Flash storage (e.g. take screen shots, take pictures) are automatically
done by the TOE, user could not change the storage location or rename them.
When configured, the user can also launch Voice Assistant to initiate some features of the phone.
However, If the actions require accessing to the user’s data (e.g. contacts for calls or messages), the
phone requires the user to manually unlock the phone before the action can be completed.
Beyond those actions, a user cannot perform any other actions other than observing notifications
displayed on the lock screen until after successfully authenticating. Additionally, the TOE provides the
user the ability to hide the contents of notifications once a password (or any other locking authentication
method) is enabled.
PP_MDF_V3.3: FIA_X509_EXT.1: The TOE checks the validity of all imported CA certificates by
checking for the presence of the basicConstraints extension and that the CA flag is set to TRUE as the
TOE imports the certificate into TOE’s Trust Anchor Database. If the TOE detects the absence of either

 74

the extension or flag, the TOE will import the certificate as a user public key and add it to the keystore
(not the Trust Anchor Database). Additionally, the TOE verifies the extendedKeyUsage Server
Authentication purpose during WPA2/WPA3 EAP-TLS negotiation.
MOD_WLAN_CLI_V1.0: FIA_X509_EXT.1/WLAN: The TOE comes with a built-in set of default Trusted
Credentials (Android's set of trusted CA certificates), and while the user cannot remove any of the built-
in default CA certificates, the user can disable any of those certificates through the user interface so
that certificates issued by disabled CA’s cannot validate successfully. In addition, a user and an
administrator/MDM can import a new trusted CA certificate into the Trust Anchor Database (the TOE
stores the new CA certificate in the Security Keystore).
The user or administrator explicitly specifies the trusted CA that the TOE will use for EAP-TLS
authentication of the server’s certificate. For mobile applications, the application developer will specify
whether the TOE should use the Android system Trusted CAs, use application-specified trusted CAs, or
a combination of the two. In this way, the TOE always knows which trusted CAs to use.
The TOE’s certificate validation algorithm examines each certificate in the path (starting with the peer’s
certificate) and first checks for validity of that certificate (e.g., has the certificate expired; or if not yet
valid, whether the certificate contains the appropriate X.509 extensions (e.g., the CA flag in the basic
constraints extension for a CA certificate, or that a server certificate contains the Server Authentication
purpose in the ExtendedKeyUsagefield), then verifies each certificate in the chain (applying the same
rules as above, but also ensuring that the Issuer of each certificate matches the Subject in the next rung
“up” in the chain and that the chain ends in a self-signed certificate present in either the TOE’s trusted
anchor database or matches a specified Root CA), and finally the TOE performs revocation checking for
all certificates in the chain.
The TOE uses X.509v3 certificates during EAP-TLS, and the certificate is validated when:
l the certificate is installed. If the integrity of the certificate fails the verification, the certificate will

not be installed (e.g. a certificate with an empty private key or empty certificate information cannot
be installed). This verification is performed in “CertInstaller.apk”.

l connecting to an Access Point with EAP protocol and auth type is set as EAP-TLS. The radius server
of Access Point sends certificate to the TOE, then the TOE check the integrity of the certificate by
“wpa_supplicant”

Both of “CertInstaller.apk” and “wpa_supplicant” are included in the TOE.
PP_MDF_V3.3: FIA_X509_EXT.2: The TOE uses X.509v3 certificates during EAP-TLS, TLS, and HTTPS.
The TOE comes with a built-in set of default Trusted Credentials (Android's set of trusted CA certificates
plus vivo’s additional set of trusted CA certificates), and while the user cannot remove any of the built-
in default CA certificates, the user can disable any of those certificates through the user interface so
that certificates issued by disabled CA’s cannot validate successfully. In addition, a user and an
administrator/MDM can import a new trusted CA certificate into the Trust Anchor Database (the TOE
stores the new CA certificate in the Security Keystore).
The TOE does not establish TLS connections itself (beyond EAP-TLS used for WPA2/WPA3 Wi-Fi
connections), but provides a series of APIs that mobile applications can use to check the validity of a
peer certificate. The user application, after correctly using the specified APIs, can be assured as to the
validity of the peer certificate and be assured that the TOE will not establish the trusted connection if
the peer certificate cannot be verified (including validity, certification path, and revocation through
OCSP). If, during the process of certificate verification, the TOE cannot establish a connection with the
server acting as the OCSP Responder, the TOE will not deem the peer’s certificate as valid and will not
establish a TLS connection with the peer.
MOD_WLAN_CLI_V1.0: FIA_X509_EXT.2/WLAN: When acting as a WPA2/WPA3 supplicant, the TOE
uses X.509 certificates as defined by RFC 5280 for EAP-TLS authentication. Because the TOE may not
have network connectivity to a revocation server prior to being admitted to the WPA2/WPA3 network
and because the TOE cannot determine the IP address or hostname of the authentication server (the Wi-
Fi access point proxies the supplicant’s authentication request to the server), the TOE will accept the
certificate of the server.
The user or administrator explicitly specifies the trusted CA that the TOE will use for EAP-TLS
authentication of the server’s certificate. For mobile applications, the application developer will specify
whether the TOE should use the Android system Trusted CAs, use application-specified trusted CAs, or
a combination of the two. In this way, the TOE always knows which trusted CAs to use.

 75

PP_MDF_V3.3: FIA_X509_EXT.3: The TOE’s OriginOS provides applications the
java.security.cert.CertPathValidator API Class of methods for validating certificates and certification
paths (certificate chains establishing a trust chain from a certificate to a trust anchor). This class is also
recommended to be used by third-party Android developers for certificate validation. However,
TrustedCertificateStore must be used to chain certificates to the Android System Trust Anchor Database
(anchors should be retrieved and provided to PKIXParameters used by CertPathValidator).
The available APIs may be found here:

http://developer.android.com/reference/java/security/cert/package-summary.html.
MOD_WLAN_CLI_V1.0: FIA_X509_EXT.6: Authorized administrators can load certificates into the TOE
in X.509v3 format, which can be used for the signature generation and verification, or establishing the
trusted channels. All the loaded certificates are stored within the TOE, and protected by the Keystore
mechanism.

7.5 Security Management
The Security management function is designed to fulfill the following security functional requirements:
PP_MDF_V3.3: FMT_MOF_EXT.1: The TOE provides the management functions described in Table 6
in section 6.1.5.2. The table includes annotations describing the roles that have access to each service
and how to access the service. The TOE enforces administrative function (Add User / Add Managed
Profile) and administrative configured restrictions by rejecting user configuration (through the UI) when
attempted. It is worth noting that the TOE’s ability to specify authorized application repositories takes
the form of allowing enterprise applications (i.e., restricting applications to only those applications
installed by an MDM Agent).
PP_MDF_V3.3: FMT_SMF.1: The TOE provides all management functions indicated as mandatory (“M”)
by Table 6. The table includes annotations describing the roles that have access to each service and
how to access the service. The TOE enforces administrative configured restrictions by rejecting user
configuration (through the UI) when attempted. Once the phone is enrolled into the enterprise
environment, the services “Add User” and “Add Managed Profile” can only be performed by the
administrator. It is worth noting that the TOE’s ability to specify authorized application repositories takes
the form of allowing enterprise applications (i.e., restricting applications to only those applications
installed by an MDM Agent).
MOD_BT_V1.0: FMT_SMF_EXT.1/BT: The administrator can disable the radios using TOE’s MDM APIs.
Once disabled, a user cannot enable the radio. The TOE’s Bluetooth operates at frequencies of 2.4 GHz.
Bluetooth BR/EDR and Bluetooth LE use same power control for turning on/off. Bluetooth BR/EDR
supports mode 2 and mode 4 level 4. Bluetooth LE supports mode 1 level 4 and mode 2. The TOE
provides Bluetooth management functionalities, such as scanning for devices, connecting with devices,
and managing data transfer between devices. TOE users can disable/enable Bluetooth discoverable
mode and Advertising and can also change the device name which is used for the Bluetooth name.
The administrator (using the TOE’s MDM APIs) can enable/disable Bluetooth tethering methods.
MOD_WLAN_CLI_V1.0: FMT_SMF.1/WLAN: The TOE provides the management functions listed in
Table 8. The TOE enforces administrative configured restrictions by rejecting user configuration (through
the UI) when attempted.
PP_MDF_V3.3: FMT_SMF_EXT.2: The TOE offers MDM agents the ability to wipe protected data
(including sensitive data), remove Enterprise applications, and remove all device stored Enterprise
resource data upon un-enrollment and factory reset. The TOE offers MDM agents the ability to wipe
protected data (effectively wiping the device) at any time. Similarly, the TOE also offers the ability to
remove Enterprise applications and a full wipe of managed profile data of the TOE’s Enterprise
data/applications at any time.

7.6 Protection of the TSF
The Protection of the TSF function is designed to fulfill the following security functional requirements:
PP_MDF_V3.3: FPT_AEX_EXT.1: The Linux kernel of the TOE’s Android operating system provides
address space layout randomization utilizing the get_random_long(void) kernel random function to

 76

provide eight unpredictable bits to the base address of any user-space memory mapping. The random
function, though not cryptographic, ensures that one cannot predict the value of the bits.
PP_MDF_V3.3: FPT_AEX_EXT.2: The TOE utilizes 5.10 Linux kernels
(https://source.android.com/devices/architecture/kernel/modular-kernels#core-kernel-requirements),
whose memory management unit (MMU) enforces read, write, and execute permissions on all pages of
virtual memory and ensures that write and execute permissions are not simultaneously granted on all
memory.
The Android operating system (as of Android 2.3) sets the ARM No eXecute (XN) bit on memory pages
and the TOE’s ARMv8 Application Processor’s Memory Management Unit (MMU) circuitry enforces the
XN bits. From Android’s documentation (https://source.android.com/devices/tech/security/index.html),
Android 2.3 forward supports “Hardware-based No eXecute (NX) to prevent code execution on the
stack and heap”. Section D.5 of the ARMv8 Architecture Reference Manual contains additional details
about the MMU of ARM-based processors:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.f/index.html
PP_MDF_V3.3: FPT_AEX_EXT.3: The TOE’s Android operating system provides explicit mechanisms to
prevent stack buffer overruns in addition to taking advantage of hardware-based No eXecute to prevent
code execution on the stack and heap. Specifically, the vendor builds the TOE (Android and support
libraries) using gcc-fstack-protector compile option to enable stack overflow protection and Android
takes advantage of hardware-based eXecute-Never to make the stack and heap non-executable. The
vendor applies these protections to all TSF executable binaries and libraries.
PP_MDF_V3.3: FPT_AEX_EXT.4: The TOE protects itself from modification by untrusted subjects using
a variety of methods. The first protection employed by the TOE is a Secure Boot process that uses
cryptographic signatures to ensure the authenticity and integrity of the bootloader and kernels using
data fused into the device processor.
The TOE protects its REK by limiting access to only trusted applications within the TEE (Trusted Execution
Environment). The TOE key manager includes a TEE module which utilizes the REK to protect all other
keys in the key hierarchy. All TEE applications are cryptographically signed, and when invoked at runtime
(at the behest of an untrusted application), the TEE will only load the trusted application after
successfully verifying its cryptographic signature.
Additionally, the TOE’s Android operating system provides 'sandboxing' that ensures that each third-
party mobile application executes with the file permissions of a unique Linux user ID, in a different virtual
memory space. This ensures that applications cannot access each other's memory space or files and
cannot access the memory space or files of other applications (notwithstanding access between
applications with a common application developer).
The TOE, in its evaluated configuration has its bootloader in the locked state. This prevents a user from
installing a new software image via another method than Google's proscribed OTA methods. The TOE
allows an operator to download and install an OTA update through the system settings (Settings-
>Software Update) while the phone is running. The TOE will verify the digital signature of the new OTA
before applying the new firmware.
For the install of the OriginOS build through fashboot interface, the user must apply "Unlock permission"
on OriginOS, and unlock the device's bootloader via installing Unlock APK, "sideload" the correct build,
reboot the phone back to the fastboot interface, re-lock the bootloader, and finally start the phone
normally. For both the locking and unlocking of the bootloader, the device is factory reset as part of the
process. This prevents an attacker from modifying or switching the image running on the device to allow
access to sensitive data. After this first install of the official build, further updates can be done via normal
OTA updates.
USSD and MMI code are not able to modify user or TSF data from the dialer at the TOE’s locked state.
PP_MDF_V3.3: FPT_JTA_EXT.1: The TOE’s prevents access to its processor’s JTAG interface by
requiring use of a signing key to authenticate prior to gaining JTAG access. Only a JTAG image with the
accompanying device serial number (which is different for each mobile device) that has been signed by
vivo’s private key can be used to access a device’s JTAG interface. The vivo private key corresponds to
the vivo ECDSA P-384 public key (a SHA-384 hash of which is fused into the TOE’s application processor).

 77

JTAG pads are located on the printed circuit board, which is covered by the rear panel and the battery,
they are inaccessible without breaking the rear panel. JTAG pads include TCK, TMS, TDI, TDO, TRST_N
and SRST_N.
PP_MDF_V3.3: FPT_KST_EXT.1: The TOE does not store any plaintext key material in its internal Flash;
the TOE encrypts all keys before storing them. This ensures that irrespective of how the TOE powers
down (e.g., a user commands the TOE to power down, the TOE reboots itself, or battery depletes or is
removed), all keys stored in the internal Flash are wrapped with a KEK. Please refer to section 7.2 of the
TSS for further information (including the KEK used) regarding the encryption of keys stored in the
internal Flash. As the TOE encrypts all keys stored in Flash, upon boot-up, the TOE must first decrypt
any keys in order to utilize them.
PP_MDF_V3.3: FPT_KST_EXT.2: The TOE itself (i.e., the mobile device) comprises a cryptographic
module that utilizes cryptographic libraries including BoringSSL, application processor cryptography
(which leverages AP hardware), and the following system-level executables that utilize KEKs: vold,
wpa_supplicant, and the Android Keystore.

1. Android Volume Daemon (vold) and AP hardware provides Data-At-Rest encryption of
the user data partition in Flash

2. wpa_supplicant provides 802.11-2014 WPA2/WPA3 services
3. Android Keystore application provides key generation, storage, deletion services to

mobile applications and to user through the UI
The TOE ensures that plaintext key material is not exported by not allowing the REK to be exported and
by ensuring that only authenticated entities can request utilization of the REK. Furthermore, the TOE
only allows the system-level executables access to plaintext DEK values needed for their operation. The
TSF software (the system-level executables) protects those plaintext DEK values in memory both by not
providing any access to these values and by clearing them when no longer needed (in compliance with
FCS_CKM_EXT.4). Note that the TOE only relies upon the user’s password to encrypt/protect key material.
PP_MDF_V3.3: FPT_KST_EXT.3: The TOE does not provide any way to export plaintext DEKs or KEKs
(including all keys stored in the Android Keystore) as the TOE chains or directly encrypts all KEKs to the
REK.
Furthermore, the components of the device are designed to prevent transmission of key material outside
the device. Each internal system component requiring access to a plaintext key (for example the Wi-Fi
driver) must have the necessary precursor(s), whether that be a password from the user or file access
to key in Flash (for example the encrypted AES key used for encryption of the Flash data partition). With
those appropriate precursors, the internal system-level component may call directly to the system-level
library to obtain the plaintext key value. The system library in turn requests decryption from a
component executing inside the trusted execution environment (TEE) and then directly returns the
plaintext key value (assuming that it can successfully decrypt the requested key, as confirmed by the
CCM/GCM verification) to the calling system component. That system component will then utilize that
key (in the example, the kernel which holds the key in order to encrypt and decrypt reads and writes to
the encrypted user data partition files in Flash). In this way, only the internal system components
responsible for a given activity have access to the plaintext key needed for the activity, and that
component receives the plaintext key value directly from the system library.
For a user application do not have any access to any system-level components and only have access to
keys that the application has imported into the Android Keystore. Upon requesting access to a key, the
mobile application receives the plaintext key value back from the system library through the Android
API. Mobile applications do not have access to the memory space of any other user’s application, so it is
not possible for a malicious application to intercept the plaintext key value to then log or transmit the
value off the device.
PP_MDF_V3.3: FPT_NOT_EXT.1: When the TOE encounters a critical failure (either a self-test failure
or TOE software integrity verification failure), a failure is message is displayed to the screen, the TOE
attempts to reboot. If the failure persists between boots, the user may attempt to boot to the recovery
mode/kernel to wipe data and perform a factory reset in order to recover the device.
PP_MDF_V3.3: FPT_STM.1: The TOE requires time for the Package Manager (which installs and verifies
APK signatures and certificates), image verifier, wpa_supplicant, and Android Keystore applications.
These TOE components obtain time from the TOE using system API calls [e.g., time() or gettimeofday()].
An application (unless a system application is residing in /system/priv-app or signed by the vendor)
cannot modify the system time as mobile applications need the Android 'SET_TIME' permission to do so.

 78

Likewise, only a process with root privileges can directly modify the system time using system-level APIs.
The TOE uses the Cellular Carrier time (obtained through the Carrier’s network time server) as a trusted
source; however, the user can also manually set the time through the TOE’s user interface. Further, this
stored time is used both for the time/date tags in audit logs and is used to track inactivity timeouts that
force the TOE into a locked state.
PP_MDF_V3.3: FPT_TST_EXT.1: The TOE automatically performs known answer power on self-tests
(POST) on its cryptographic algorithms to ensure that they are functioning correctly. Each component
providing cryptography (application processor, and BoringSSL) performs known answer tests on it
cryptographic algorithms to ensure it is working correctly. Should any of the tests fail, the TOE displays
an error message stating “Boot Failure” and halts the boot process, and forces a reboot of the device.

Table 18: Power-up Cryptographic Algorithm Known Answer Tests

Algorithm Implemented in Description

AES
encryption/decryptio
n

BoringSSL Comparison of known answer to calculated value

SHA hashing BoringSSL Comparison of known answer to calculated value

RSA signature
generation and
verification

BoringSSL Comparison of known answer to calculated value

ECDSA signature
generation and
verification

BoringSSL Comparison of known answer to calculated value

HMAC-SHA BoringSSL Comparison of known answer to calculated value

DRBG random bit
generation

BoringSSL Comparison of known answer to calculated value

AES encryption /
decryption

AP Comparison of known answer to calculated value

SHA hashing AP Comparison of known answer to calculated value

HMAC-SHA AP Comparison of known answer to calculated value

PP_MDF_V3.3: FPT_TST_EXT.2/PREKERNEL: The TOE ensures a secure boot process in which the
TOE verifies the digital signature of the bootloader software for the Application Processor (using a public
key whose hash resides in the processor’s internal fuses) before transferring control. The bootloader, in
turn, verifies the signature of the Linux kernel it loads. This digital signature verification processes occur
for all boot modes (normal, recovery and fastboot). The recovery and fastboot modes utilize the same
alternative boot mode but expose different software to the user once the boot is complete. And for all
three boot modes, the TOE performs checking of the entire /system partition through use of Android’s
dm_verity mechanism (and while the TOE will still operate, it will log any blocks/executables that have
been modified).
MOD_WLAN_CLI_V1.0: FPT_TST_EXT.3/WLAN: TOE automatically performs known answer power on
self-tests (POST) on its cryptographic algorithms to ensure that they are functioning correctly. Each
component providing cryptography (application processor, and BoringSSL) performs known answer tests
on their cryptographic algorithms to ensure they are working correctly. WLAN uses the same
cryptographic capability provided by application processor and BoringSSL, and its POST is covered by
the TOE. The WiFi chip performs POST of AES-CCMP by its own hardware implementation.

 79

The TSF executable code of WLAN, such as WLAN chip driver and wpa_supplicant, are digitally signed
by vivo’s signing private key together with OriginOS.
The TOE verifies the digital signatures of the OriginOS and the TSF executable code of WLAN, and
performs power on self-tests during every startup process. Should any of the tests fail, the TOE displays
an error message stating “Boot Failure” and halts the boot process, and forces a reboot of the device.
PP_MDF_V3.3: FPT_TUD_EXT.1: The TOE’s user interface provides a method to query the current
version of the TOE software/firmware (OriginOS version, baseband version, kernel version, build number,
and software version) and hardware (model and version). Additionally, the TOE provides users the ability
to review the currently installed apps (including third party 'built-in' applications) and their version.
PP_MDF_V3.3: FPT_TUD_EXT.2: The TOE verifies all OTA (Over The Air) updates to the TOE software
(which includes baseband processor updates) using a public key chaining ultimately to the Root Public
Key, a hardware protected key whose SHA-384 hash resides inside the application processor. Should this
verification fail, the software update will fail and the update will not be installed.
The application processor verifies the bootloader’s authenticity and integrity (thus tying the bootloader
and subsequent stages to a hardware root of trust: the SHA-384 hash of the Root Public Key, which
cannot be reprogrammed after the “write-enable” fuse has been blown).
The OriginOS of the TOE requires that all applications shall be signed with a valid signature before
installing the application.
Additionally, OriginOS allows updates through vivo App Market and Google Play updates, including both
APK and APEX files. Both file types use Android APK signature format and the TOE verifies the
accompanying signature prior to installing the file (additionally, OriginOS ensures that updates to
existing files use the same signing certificate).
PP_MDF_V3.3: FPT_TUD_EXT.3: The OriginOS on the TOE requires that all applications bear a valid
signature before Android will install the application.
Additionally, OriginOS allows updates through vivo Play updates, including both APK and APEX files. Both
file types use Android APK signature format and the TOE verifies the accompanying signature prior to
installing the file (additionally, Android ensures that updates to existing files use the same signing
certificate).
PP_MDF_V3.3: ALC_TSU_EXT.1: To make timely security updates to the TOE, the following procedures
are in place:

a. Security vulnerabilities reporting:
vivo supports a Security Response Center for OriginOS outlined here:
https://security.vivo.com.cn/#/home
This allows developers or users to search for, file, and vote on vulnerabilities that need
to be fixed. This helps to ensure that all vulnerabilities that affect large numbers of
people get pushed up in priority to be fixed. The user could login to the website from
computer-based web browser, or directly establish a trusted channel web connection to
securely file the vulnerability by following the set-up steps to establish a secure
HTTPS/TLS/EAP-TLS connection from the TOE.

b. Security vulnerability response process:
vivo creates updates and patches to resolve reported issues as quickly as possible. The
delivery time for resolving an issue depends on the severity, normally from several days
to 1 month for the critical or high-risk vulnerabilities, or up to 3 months for medium or
low-risk vulnerabilities. The updates or patches are tested before releasing to ensure
they will not adversely impact on other functions of the product. Once the testing is
finished, vivo rolls out the updates and patches, then user could query the updates of
the TOE via OTA as addressed in FPT_TUD_EXT.1, and update the TOE by following the
[CC_GUIDE].

c. Security updates announcement:
All the vulnerabilities are announced on website:
https://www.vivo.com/en/security

 80

vivo commits to pushing out monthly security updates for the OriginOS operating system
(including the Java layer and kernel, not including applications). Monthly security
updates have historically been supported on vivo products for 2 years after release.
These systematic updates are designed to address the highest security problems as
quickly as possible and allows vivo to ensure their mobile phone products remain as safe
as possible and any issues are addressed promptly.

7.7 TOE Access
The TOE access function is designed to fulfill the following security functional requirements:
PP_MDF_V3.3: FTA_TAB.1: Once configured by the administrator, the TOE shows an advisory warning
message on the screen during the boot sequence regarding unauthorized use of the phone before
establishing a user session. The configuration interface can be found from the link:
l https://developer.android.com/reference/android/app/admin/DevicePolicyManager#setEndUserSes

sionMessage(android.content.ComponentName,%20java.lang.CharSequence)
PP_MDF_V3.3: FTA_SSL_EXT.1: The TOE transitions to its locked state either immediately after a User
initiates a lock by pressing the power button (if configured) or after a (also configurable) period of
inactivity, and as part of that transition, the TOE will display a lock screen to obscure the previous
contents and play a “lock sound” to indicate the phone’s transition; however, the TOE’s lock screen still
displays email notifications, calendar appointments, user configured widgets, text message notifications,
the time, date, call notifications, battery life, signal strength, and carrier network. But without
authenticating first, a user cannot perform any related actions based upon these notifications (they
cannot respond to emails, calendar appointments, or text messages) other than the actions assigned in
FIA_UAU_EXT.2.1 (see selections in section 6). Note that during power up, the TOE presents the user
with an unlock screen. While at this screen, users can access some basic device functionality (e.g.,
making an emergency call) and basic system data is decrypted. Once the user enters their password,
the user data partition is then decrypted and the full functionality of the phone is unlocked. After this
initial screen, upon (re)locking the phone, the user is presented with an “unlock for all features and data”
unlock screen. This screen puts the phone in the same state as the aforementioned lock screen,
encrypting user data and locking any functionality that requires data that is decrypted by the user’s
password. While locked, the actions described in FIA_UAU_EXT.2.1 are available for the user to utilize.
MOD_WLAN_CLI_V1.0: FTA_WSE_EXT.1: The TOE allows an administrator to specify (through the use
of an MDM) a list of wireless networks (SSIDs) to which the user may direct the TOE to connect to, the
security type, authentication protocol, and the client credentials to be used for authentication. When not
enrolled with an MDM, the TOE allows the user to control to which wireless networks the TOE should
connect, but does not provide an explicit list of such networks, rather the user may scan for available
wireless network (or directly enter a specific wireless network), and then connect. Once a user has
connected to a wireless network, the TOE will automatically reconnect to that network when in range
and the user has enabled the TOE’s Wi-Fi radio.

7.8 Trusted Path/Channels
The Trusted path/channel’s function is designed to fulfill the following security functional requirements:
MOD_BT_V1.0: FTP_BLT_EXT.1: The TOE enables Bluetooth encryption by default, and enforces the
use of encryption when transmitting data over the Bluetooth trusted channel for BR/EDR and LE. The
TOE uses key pairs generated per requirement FCS_CKM_EXT.8 for Bluetooth encryption.
The TOE provides APIs allowing non-TSF applications (mobile applications) the ability to establish a
secure channel using Bluetooth DR/EDR and LE.

Bluetooth (android.bluetooth):
http://developer.android.com/reference/android/bluetooth/package-summary.html

MOD_BT_V1.0: FTP_BLT_EXT.2: The TOE terminates the connection if the remote device stops
encryption while connected to the TOE.
MOD_BT_V1.0: FTP_BLT_EXT.3/BR, FTP_BLT_EXT.3/LE: The TOE sets the minimum encryption key
size to 128 bits for Bluetooth BR/EDR and LE, and encryption key size is not able to be negotiated nor
configured to smaller than 128 bits.

 81

PP_MDF_V3.3: FTP_ITC_EXT.1: The TOE provides secured (encrypted and mutually authenticated)
communication channels between itself and other trusted IT products through the use of IEEE 802.11-
2012, 802.1X, and EAP-TLS and TLS, HTTPS. The TOE permits itself and applications to initiate
communicate via the trusted channel, and the TOE initiates communications via the WPA2/WPA3 (IEEE
802.11-2012, 802.1X with EAP-TLS) trusted channel for connection to a wireless access point. The TOE
provides mobile applications and MDM agents access to HTTPS and TLS via published APIs, thus
facilitating administrative communication and configured enterprise connections. These APIs are
accessible to any application that needs an encrypted end-to-end trusted channel. The TOE also provides
the OTA via HTTPS and TLS channel.
MOD_WLAN_CLI_V1.0: FTP_ITC.1/WLAN: The TOE provides secured (encrypted and mutually
authenticated) communication channels between itself and other trusted IT products through the use of
IEEE 802.11-2012, 802.1X, and EAP-TLS. The TOE initiates communications via the WPA2/WPA3 (IEEE
802.11-2012, 802.1X with EAP-TLS) trusted channel for connection to a wireless access point.

 82

8 TSF Inventory
Below is a list of user-mode TSF binaries and libraries that are used to provide the security
functionality of the TOE. Each of the below are built with the "-fstack-protector" complier option to
protect overflow stack attack.

Table 19: TSF name and path

Name Path Security Function

keystore2 /system/bin Keystore

gatekeeperd /system/bin Key Management

qseecomd /vendor/bin DAR

time_daemon /vendor/bin Time

vold /system/bin DAR

adbd /system/bin Security System Settings / Recovery

libcrypto.so /system/lib Crypto

libcrypto.so /system/lib64 Crypto

libkeystore_crypto.so /system/lib Keystore

libkeystore_crypto.so /system/lib64 Keystore

libkeyutils.so /system/lib64 DAR

libssl.so /system/lib SSL/TLS

libssl.so /system/lib64 SSL/TLS

update_engine_sideload /system/bin/ Recovery / Initial Image Load

recovery /system/bin Recovery

mke2fs /system/bin Recovery

charger /system/bin Recovery

init /system/bin Recovery

libQSEEComAPI.so system/vendor/lib,
system/vendor/lib64 TrustZone Daemon

com.OriginOS.ocs.openca
pabilityservice

/my_stock/app/OpenCapabilitySe
rvice DAR

wpa_supplicant /vendor/bin/hw WLAN

racoon system/bin VPN

 83

