

Supporting Document

Mandatory Technical Document

Full Drive Encryption: Authorization

Acquisition

September 2016

Version 2.0

CCDB-2016

Foreword
This is a supporting document, intended to complement the Common Criteria version 3 and the

associated Common Evaluation Methodology for Information Technology Security Evaluation.

Supporting documents may be “Guidance Documents”, that highlight specific approaches and

application of the standard to areas where no mutual recognition of its application is required, and as

such, are not of normative nature, or “Mandatory Technical Documents”, whose application is

mandatory for evaluations whose scope is covered by that of the supporting document. The usage of

the latter class is not only mandatory, but certificates issued as a result of their application are

recognized under the CCRA.

This supporting document has been developed by Full Drive Encryption iTC and is designed to be

used to support the evaluations of TOEs against the cPPs identified in section Error! Reference

source not found..

Technical Editor:

FDE iTC

Document history:

V0.7, September 2014 (Initial Release for Public review)

V0.11, October 2014 (Adjudicated comments from Public Review, submitted to CCDB)

V1.0 January 2015 (Incorporated changes due to comments received from CCDB review)

V1.5 September 2015 (Updated to reflect latest revision of cPP)

V2.0 September 2016 (Updated to reflect comments received)

General Purpose:

The FDE technology type is special due to its physical scope and its limited external interfaces. This

leads to some difficulties in evaluating the correctness of the implementation of the TOE’s provided

security functions. In the case of the Authorization Acquisition (AA), it may be difficult to trigger the

interface to demonstrate the TSF is properly conditioning a password, or combining multiple

submasks. Therefore methods have to be described on how to overcome this challenge (as well as

others) in a comparable, transparent and repeatable manner in this document.

Furthermore the main functionality of the AA is to gather user input and provide the Encryption

Engine with a value that can be used to make the data encryption key available for

encryption/decryption functions. In order to ensure comparable, transparent and repeatable evaluation

of the implemented mechanisms, methods have to be described that may consist of agreed evaluation

approaches, e.g. how to prove that the claimed functionality is really done by the TOE.

Field of special use:

Full Drive Encryption devices, specifically the set of security functional requirements associated with

the Authorization Acquisition component.

Acknowledgements:

This Supporting Document was developed by the Full Drive Encryption international Technical

Community with representatives from industry, Government agencies, Common Criteria Test

Laboratories, and members of academia.

Contents

1 INTRODUCTION 5

1.1 Technology Area and Scope of Supporting Document 5

1.2 Structure of the Document 5

1.3 Terminology 6
1.3.1 Glossary 6
1.3.2 Acronyms 10

2 EVALUATION ACTIVITIES FOR SFRS 12

2.1 Cryptographic Support (FCS) 13
2.1.1 Authorization Factor Acquisition (FCS_AFA) 13
2.1.2 Cryptographic Key Management (FCS_CKM) 14
2.1.3 Key Chaining (FCS_KYC) 18
2.1.4 Cryptographic Operation (FCS_SNI) 19

2.2 Security Management (FMT) 20
2.2.1 Management of functions in TSF (FMT_MOF) 20
2.2.2 Specifications of Management Functions (FMT_SMF) 20

2.3 Protection of the TSF (FPT) 22
2.3.1 Key and Key Material Protection (FPT_KYP) 22
2.3.2 Power Management (FPT_PWR) 23
2.3.3 Trusted Update (FPT_TUD) 24

3 EVALUATION ACTIVITIES FOR OPTIONAL REQUIREMENTS 25

3.1 Protection of the TSF (FPT) 25
3.1.1 TSF Testing (FPT_TST) 25

4 EVALUATION ACTIVITIES FOR SELECTION-BASED REQUIREMENTS 26

4.1 Cryptographic Support (FCS) 26
4.1.1 Cryptographic Key Management (FCS_CKM) 26
4.1.2 Cryptographic Operation (FCS_COP) 28
4.1.3 Cryptographic Key Derivation (FCS_KDF) 39
4.1.4 Cryptographic Password Construct and Conditioning (FCS_PCC) 39
4.1.5 Random Bit Generation (FCS_RBG) 40
4.1.6 Submask combining (FCS_SMC) 41
4.1.7 Validation (FCS_VAL) 42

5 EVALUATION ACTIVITIES FOR SARS 44

5.1 ASE: Security Target Evaluation 44
5.1.1 Conformance Claims (ASE_CCL.1) 44

5.2 Development (ADV) 44
5.2.1 Basic Functional Specification (ADV_FSP.1) 44

5.3 Guidance Documents (AGD) 47
5.3.1 Operational User Guidance (AGD_OPE.1) 47
5.3.2 Preparative Procedures (AGD_PRE.1) 48

5.4 Tests (ATE) 49
5.4.1 Independent Testing – Conformance (ATE_IND.1) 49

5.5 Vulnerability Assessment (AVA) 50
5.5.1 Vulnerability Survey (AVA_VAN.1) 50

6 REQUIRED SUPPLEMENTARY INFORMATION 55

7 REFERENCES 56

A. VULNERABILITY ANALYSIS 59

A.1 Sources of vulnerability information 59

A.1.1 Type 1 Hypotheses—Public-Vulnerability-based 59

A.1.2 Type 2 Hypotheses—iTC-Sourced 61

A.1.3 Type 3 Hypotheses—Evaluation-Team-Generated 61

A.1.4 Type 4 Hypotheses—Tool-Generated 62

A.2 Process for Evaluator Vulnerability Analysis 62

A.3 Reporting 63

B. FDE EQUIVALENCY CONSIDERATIONS 66

1 Introduction

1.1 Technology Area and Scope of Supporting Document

1 The purpose of the first set of Collaborative Protection Profiles (cPPs) for Full Drive

Encryption (FDE): Authorization Acquisition (AA) and Encryption Engine (EE) is to

provide requirements for Data-at-Rest protection for a lost device. These cPPs allow

FDE solutions based in software and/or hardware to meet the requirements. The form

factor for a storage device may vary, but could include: system hard drives/solid state

drives in servers, workstations, laptops, mobile devices, tablets, and external media.

A hardware solution could be a Self-Encrypting Drive or other hardware-based

solutions; the interface (USB, SATA, etc.) used to connect the storage device to the

host machine is outside the scope.

2 Full Drive Encryption encrypts all data (with certain exceptions) on the storage

device and permits access to the data only after successful authorization to the FDE

solution. The exceptions include the necessity to leave a portion of the storage device

(the size may vary based on implementation) unencrypted for such things as the

Master Boot Record (MBR) or other AA/EE pre-authentication software. These FDE

cPPs interpret the term “full drive encryption” to allow FDE solutions to leave a

portion of the storage device unencrypted so long as it contains no plaintext user or

plaintext authorization data.

3 The FDE cPP - Authorization Acquisition describes the requirements for the

Authorization Acquisition piece and details the security requirements and evaluation

activities necessary to interact with a user and result in the availability of a data

encryption key (DEK).

4 This Supporting Document is mandatory for evaluations of TOEs that claim

conformance to the following cPP:

5 a) Collaborative Protection Profile for Full Drive Encryption – Authorization

Acquisition, September 2016.

6 Although Evaluation Activities are defined mainly for the evaluators to follow, in

general they will also help Developers to prepare for evaluation by identifying

specific requirements for their TOE. The specific requirements in Evaluation

Activities may in some cases clarify the meaning of SFRs, and may identify particular

requirements for the content of Security Targets (especially the TOE Summary

Specification), user guidance documentation, and possibly supplementary information

(e.g. for entropy analysis or cryptographic key management architecture).

1.2 Structure of the Document

7 Evaluation Activities can be defined for both Security Functional Requirements and

Security Assurance Requirements. These are defined in separate sections of this

Supporting Document.

8 If any Evaluation Activity cannot be successfully completed in an evaluation then the

overall verdict for the evaluation is a ‘fail’. In rare cases there may be acceptable

reasons why an Evaluation Activity may be modified or deemed not applicable for a

particular TOE, but this must be agreed with the Certification Body for the

evaluation.

9 In general, if all Evaluation Activities (for both SFRs and SARs) are successfully

completed in an evaluation then it would be expected that the overall verdict for the

evaluation is a ‘pass’. To reach a ‘fail’ verdict when the Evaluation Activities have

been successfully completed would require a specific justification from the evaluator

as to why the Evaluation Activities were not sufficient for that TOE.

10 Similarly, at the more granular level of Assurance Components, if the Evaluation

Activities for an Assurance Component and all of its related SFR Evaluation

Activities are successfully completed in an evaluation then it would be expected that

the verdict for the Assurance Component is a ‘pass’. To reach a ‘fail’ verdict for the

Assurance Component when these Evaluation Activities have been successfully

completed would require a specific justification from the evaluator as to why the

Evaluation Activities were not sufficient for that TOE.

1.3 Terminology

1.3.1 Glossary

11 For definitions of standard CC terminology, see [CC] part 1.

12 Supplementary information  information that is not necessarily included in the

Security Target or operational guidance, and that may not necessarily be public.

Examples of such information could be entropy analysis, or description of a

cryptographic key management architecture used in (or in support of) the TOE. The

requirement for any such supplementary information will be identified in the relevant

cPP (see description in section 4).

Term Meaning

Authorization Factor A value that a user knows, has, or is (e.g. password, token, etc)

submitted to the TOE to establish that the user is in the

community authorized to use the hard disk and that is used in

the derivation or decryption of the BEV and eventual

decryption of the DEK. Note that these values may or may not

be used to establish the particular identity of the user.

Assurance Grounds for confidence that a TOE meets the SFRs [CC1].

Border Encryption Value A value passed from the AA to the EE intended to link the key

chains of the two components.

Key Sanitization A method of sanitizing encrypted data by securely overwriting

the key that was encrypting the data.

Data Encryption Key (DEK) A key used to encrypt data-at-rest.

Term Meaning

Full Drive Encryption Refers to partitions of logical blocks of user accessible data as

managed by the host system that indexes and partitions and an

operating system that maps authorization to read or write data

to blocks in these partitions. For the sake of this Security

Program Definition (SPD) and cPP, FDE performs encryption

and authorization on one partition, so defined and supported by

the OS and file system jointly, under consideration. FDE

products encrypt all data (with certain exceptions) on the

partition of the storage device and permits access to the data

only after successful authorization to the FDE solution. The

exceptions include the necessity to leave a portion of the

storage device (the size may vary based on implementation)

unencrypted for such things as the Master Boot Record (MBR)

or other AA/EE pre-authentication software. These FDE cPPs

interpret the term “full drive encryption” to allow FDE

solutions to leave a portion of the storage device unencrypted

so long as it contains no protected data.

Intermediate Key A key used in a point between the initial user authorization and

the DEK.

Host Platform The local hardware and software the TOE is running on, this

does not include any peripheral devices (e.g. USB devices) that

may be connected to the local hardware and software.

Key Chaining The method of using multiple layers of encryption keys to

protect data. A top layer key encrypts a lower layer key which

encrypts the data; this method can have any number of layers.

Key Encryption Key (KEK) A key used to encrypt other keys, such as DEKs or storage that

contains keys.

Key Material Key material is commonly known as critical security parameter

(CSP) data, and also includes authorization data, nonces, and

metadata.

Key Release Key (KRK) A key used to release another key from storage, it is not used

for the direct derivation or decryption of another key.

Operating System (OS) Software which runs at the highest privilege level and can

directly control hardware resources.

Non-Volatile Memory A type of computer memory that will retain information

without power.

Powered-Off State The device has been shutdown.

Protected Data This refers to all data on the storage device with the exception

of a small portion required for the TOE to function correctly. It

is all space on the disk a user could write data to and includes

the operating system, applications, and user data. Protected

data does not include the Master Boot Record or Pre-

authentication area of the drive – areas of the drive that are

necessarily unencrypted.

Submask A submask is a bit string that can be generated and stored in a

number of ways.

Term Meaning

Target of Evaluation A set of software, firmware and/or hardware possibly

accompanied by guidance. [CC1]

Term Meaning

Term Meaning

Authorization Factor A value that a user knows, has, or is (e.g. password, token, etc)

submitted to the TOE to establish that the user is in the community

authorized to use the hard disk and that is used in the derivation or

decryption of the BEV and eventual decryption of the DEK. Note

that these values may or may not be used to establish the particular

identity of the user.

Assurance Grounds for confidence that a TOE meets the SFRs [CC1].

Border Encryption Value A value passed from the AA to the EE intended to link the key chains

of the two components.

Key Sanitization A method of sanitizing encrypted data by securely overwriting the

key that was encrypting the data.

Data Encryption Key (DEK) A key used to encrypt data-at-rest.

Full Drive Encryption Refers to partitions of logical blocks of user accessible data as

managed by the host system that indexes and partitions and an

operating system that maps authorization to read or write data to

blocks in these partitions. For the sake of this Security Program

Definition (SPD) and cPP, FDE performs encryption and

authorization on one partition, so defined and supported by the OS

and file system jointly, under consideration. FDE products encrypt all

data (with certain exceptions) on the partition of the storage device

and permits access to the data only after successful authorization to

the FDE solution. The exceptions include the necessity to leave a

portion of the storage device (the size may vary based on

implementation) unencrypted for such things as the Master Boot

Record (MBR) or other AA/EE pre-authentication software. These

FDE cPPs interpret the term “full drive encryption” to allow FDE

solutions to leave a portion of the storage device unencrypted so long

as it contains no protected data.

Intermediate Key A key used in a point between the initial user authorization and the

DEK.

Host Platform The local hardware and software the TOE is running on, this does not

include any peripheral devices (e.g. USB devices) that may be

connected to the local hardware and software.

Key Chaining The method of using multiple layers of encryption keys to protect

data. A top layer key encrypts a lower layer key which encrypts the

data; this method can have any number of layers.

Key Encryption Key (KEK) A key used to encrypt other keys, such as DEKs or storage that

contains keys.

Key Material Key material is commonly known as critical security parameter

(CSP) data, and also includes authorization data, nonces, and

metadata.

Key Release Key (KRK) A key used to release another key from storage, it is not used for the

direct derivation or decryption of another key.

Operating System (OS) Software which runs at the highest privilege level and can directly

control hardware resources.

Non-Volatile Memory A type of computer memory that will retain information without

power.

Powered-Off State The device has been shutdown.

Term Meaning

Protected Data This refers to all data on the storage device with the exception of a

small portion required for the TOE to function correctly. It is all

space on the disk a user could write data to and includes the

operating system, applications, and user data. Protected data does not

include the Master Boot Record or Pre-authentication area of the

drive – areas of the drive that are necessarily unencrypted.

Submask A submask is a bit string that can be generated and stored in a

number of ways.

Target of Evaluation A set of software, firmware and/or hardware possibly accompanied

by guidance. [CC1]

1.3.2 Acronyms

Acronym Meaning

AA Authorization Acquisition

AES Advanced Encryption Standard

BEV Border Encryption Value

BIOS Basic Input Output System

CBC Cipher Block Chaining

CC Common Criteria

CCM Counter with CBC-Message Authentication Code

CEM Common Evaluation Methodology

CPP Collaborative Protection Profile

DEK Data Encryption Key

DRBG Deterministic Random Bit Generator

DSS Digital Signature Standard

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EE Encryption Engine

EEPROM Electrically Erasable Programmable Read-Only Memory

FIPS Federal Information Processing Standards

FDE Full Drive Encryption

FFC Finite Field Cryptography

GCM Galois Counter Mode

HMAC Keyed-Hash Message Authentication Code

IEEE Institute of Electrical and Electronics Engineers

IT Information Technology

ITSEF IT Security Evaluation Facility

ISO/IEC International Organization for Standardization / International Electrotechnical

Commission

IV Initialization Vector

KEK Key Encryption Key

KMD Key Management Description

KRK Key Release Key

MBR Master Boot Record

NIST National Institute of Standards and Technology

OS Operating System

RBG Random Bit Generator

RNG Random Number Generator

RSA Rivest Shamir Adleman Algorithm

SAR Security Assurance Requirement

SED Self Encrypting Drive

SHA Secure Hash Algorithm

SFR Security Functional Requirement

SPD Security Problem Definition

SPI Serial Peripheral Interface

ST Security Target

TOE Target of Evaluation

TPM Trusted Platform Module

TSF TOE Security Functionality

TSS TOE Summary Specification

USB Universal Serial Bus

XOR Exclusive or

XTS XEX (XOR Encrypt XOR) Tweakable Block Cipher with Ciphertext Stealing

2 Evaluation Activities for SFRs

13 The EAs presented in this section capture the actions the evaluator performs to

address technology specific aspects covering specific SARs (e.g.., ASE_TSS.1,

ADV_FSP.1, AGD_OPE.1, and ATE_IND.1) – this is in addition to the CEM work

units that are performed in Section 5 (Error! Reference source not found.).

14 Regarding design descriptions (designated by the subsections labelled TSS, as well as

any required supplementary material that may be treated as proprietary), the evaluator

must ensure there is specific information that satisfies the EA. For findings regarding

the TSS section, the evaluator’s verdicts will be associated with the CEM work unit

ASE_TSS.1-1. Evaluator verdicts associated with the supplementary evidence will

also be associated with ASE_TSS.1-1, since the requirement to provide such evidence

is specified in ASE in the cPP.

15 For ensuring the guidance documentation provides sufficient information for the

administrators/users as it pertains to SFRs, the evaluator’s verdicts will be associated

with CEM work units ADV_FSP.1-7, AGD_OPE.1-4, and AGD_OPE.1-5.

16 Finally, the subsection labelled Tests is where the iTC has determined that testing of

the product in the context of the associated SFR is necessary. While the evaluator is

expected to develop tests, there may be instances where it is more practical for the

developer to construct tests, or where the developer may have existing tests.

Therefore, it is acceptable for the evaluator to witness developer-generated tests in

lieu of executing the tests. In this case, the evaluator must ensure the developer’s tests

are executing both in the manner declared by the developer and as mandated by the

EA. The CEM work units that are associated with the EAs specified in this section

are: ATE_IND.1-3, ATE_IND.1-4, ATE_IND.1-5, ATE_IND.1-6, and ATE_IND.1-

7.

2.1 Cryptographic Support (FCS)

2.1.1 Authorization Factor Acquisition (FCS_AFA)

2.1.1.1 FCS_AFA_EXT.1 Authorization Factor Acquisition

2.1.1.1.1 TSS

17 The evaluator shall first examine the TSS to ensure that the authorization

factors specified in the ST are described. For password-based factors the

examination of the TSS section is performed as part of FCS_PCC_EXT.1

Evaluation Activities. Additionally in this case, the evaluator shall verify that

the operational guidance discusses the characteristics of external authorization

factors (e.g., how the authorization factor must be generated; format(s) or

standards that the authorization factor must meet) that are able to be used by

the TOE.

18 If other authorization factors are specified, then for each factor, the TSS specifies

how the factors are input into the TOE.

2.1.1.1.2 Operational Guidance

19 The evaluator shall verify that the AGD guidance includes instructions for all of the

authorization factors. The AGD will discuss the characteristics of external

authorization factors (e.g., how the authorization factor is generated; format(s) or

standards that the authorization factor must meet, configuration of the TPM device

used) that are able to be used by the TOE.

2.1.1.1.3 KMD

20 The evaluator shall examine the Key Management Description to confirm that the

initial authorization factors (submasks) directly contribute to the unwrapping of the

BEV.

21 The evaluator shall verify the KMD describes how a submask is produced from the

authorization factor (including any associated standards to which this process might

conform), and verification is performed to ensure the length of the submask meets the

required size (as specified in this requirement).

2.1.1.1.4 Test

22 The password authorization factor is tested in FCS_PCC_EXT.1.

23 The evaluator shall also perform the following tests:

24 Test 1 [conditional]: If there is more than one authorization factor, ensure that failure

to supply a required authorization factor does not result in access to the decrypted

plaintext data.

2.1.1.2 FCS_AFA_EXT.2 Timing of Authorization Factor Acquisition

2.1.1.2.1 TSS

25 The evaluator shall examine the TSS for a description of authorization factors and

which of the factors are used to gain access to user data after the TOE entered a

Compliant power saving state. The TSS is inspected to ensure it describes that each

authorization factor satisfies the requirements of FCS_AFA_EXT.1.1.

2.1.1.2.2 Operational Guidance

26 The evaluator shall examine the guidance documentation for a description of

authorization factors used to access plaintext data when resuming from a Compliant

power saving state.

2.1.1.2.3 KMD

27 There are no KMD evaluation activities for this SFR.

2.1.1.2.4 Test

28 The evaluator shall perform the following test:

 Enter the TOE into a Compliant power saving state

 Force the TOE to resume from a Compliant power saving state

 Release an invalid authorization factor and verify that access to decrypted

plaintext data is denied

 Release a valid authorization factor and verify that access to decrypted

plaintext data is granted.

2.1.2 Cryptographic Key Management (FCS_CKM)

2.1.2.1 FCS_CKM.4(a) Cryptographic Key Destruction (Power Management)

2.1.2.1.1 TSS

29 The evaluator shall verify the TSS provides a high level description of how keys

stored in volatile memory are destroyed. The valuator to verify that TSS outlines:

 - if and when the TSF or the Operational Environment is used to destroy keys from

volatile memory;

 - if and how memory locations for (temporary) keys are tracked;

 - details of the interface used for key erasure when relying on the OE for memory

clearing.

2.1.2.1.2 Operational Guidance

30 The evaluator shall check the guidance documentation if the TOE depends on the

Operational Environment for memory clearing and how that is achieved.

2.1.2.1.3 KMD

31 The evaluator shall check to ensure the KMD lists each type of key, its origin,

possible memory locations in volatile memory.

2.1.2.1.4 Test

32 The test activities performed for this SFR are identical to those performed for

FCS_CKM.4(a).

2.1.2.2 FCS_CKM.4(d) Cryptographic Key Destruction (Software TOE, 3rd
Party Storage)

2.1.2.2.1 TSS + KMD (Key Management Description may be used if necessary
details describe proprietary information)

33 The evaluator examines the TSS to ensure it describes how the keys are managed in

volatile memory. This description includes details of how each identified key is

introduced into volatile memory (e.g. by derivation from user input, or by

unwrapping a wrapped key stored in non-volatile memory) and how they are

overwritten.

34 The evaluator shall check to ensure the TSS lists each type of key that is stored in in

non-volatile memory, and identifies how the TOE interacts with the underlying

platform to manage keys (e.g., store, retrieve, destroy). The description includes

details on the method of how the TOE interacts with the platform, including an

identification and description of the interfaces it uses to manage keys (e.g., file

system APIs, platform key store APIs).

35 The evaluator examines the interface description for each different media type to

ensure that the interface supports the selection(s) and description in the TSS.

36 The evaluator shall check that the TSS identifies any configurations or circumstances

that may not strictly conform to the key destruction requirement. If the ST makes use

of the open assignment and fills in the type of pattern that is used, the evaluator

examines the TSS to ensure it describes how that pattern is obtained and used. The

evaluator shall verify that the pattern does not contain any CSPs.

2.1.2.2.2 Operational Guidance

37 There are a variety of concerns that may prevent or delay key destruction in some

cases. The evaluator shall check that the guidance documentation identifies

configurations or circumstances that may not strictly conform to the key destruction

requirement, and that this description is consistent with the relevant parts of the TSS

and any other relevant Required Supplementary Information. The evaluator shall

check that the guidance documentation provides guidance on situations where key

destruction may be delayed at the physical layer.

38 For example, when the TOE does not have full access to the physical memory, it is

possible that the storage may be implementing wear-leveling and garbage collection.

This may create additional copies of the key that are logically inaccessible but persist

physically. In this case, it is assumed the drive supports the TRIM command and

implements garbage collection to destroy these persistent copies when not actively

engaged in other tasks.

39 Drive vendors implement garbage collection in a variety of different ways, as such

there is a variable amount of time until data is truly removed from these solutions.

There is a risk that data may persist for a longer amount of time if it is contained in a

block with other data not ready for erasure. It is assumed the operating system and

file system of the OE support TRIM, instructing the non-volatile memory to erase

copies via garbage collection upon their deletion.

40 It is assumed that if a RAID array is being used, only set-ups that support TRIM are

utilized. It is assumed if the drive is connected via PCI-Express, the operating system

supports TRIM over that channel. It is assumed the drive is healthy and contains

minimal corrupted data and will be end of life before a significant amount of damage

to drive health occurs, it is assumed there is a risk small amounts of potentially

recoverable data may remain in damaged areas of the drive.

41 Finally, it is assumed the keys are not stored using a method that would be

inaccessible to TRIM, such as being contained in a file less than 982 bytes which

would be completely contained in the master file table.

2.1.2.2.3 Test

42 Test 1: Applied to each key held as plaintext in volatile memory and subject to

destruction by overwrite by the TOE (whether or not the plaintext value is

subsequently encrypted for storage in volatile or non-volatile memory). In the case

where the only selection made for the destruction method key was removal of power,

then this test is unnecessary. The evaluator shall:

1. Record the value of the key in the TOE subject to clearing.

2. Cause the TOE to perform a normal cryptographic processing

with the key from Step #1.

3. Cause the TOE to clear the key.

4. Cause the TOE to stop the execution but not exit.

5. Cause the TOE to dump the entire memory of the TOE into a

binary file.

6. Search the content of the binary file created in Step #5 for

instances of the known key value from Step #1.

7. Break the key value from Step #1 into 3 similar sized pieces and

perform a search using each piece.

Steps 1-6 ensure that the complete key does not exist anywhere in volatile

memory. If a copy is found, then the test fails.

Step 7 ensures that partial key fragments do not remain in memory. If a

fragment is found, there is a miniscule chance that it is not within the context

of a key (e.g., some random bits that happen to match). If this is the case the

test should be repeated with a different key in Step #1. If a fragment is found

the test fails.

43 The following tests apply only to selection a), since the TOE in this instance has more

visibility into what is happening within the underlying platform (e.g., a logical view

of the media). In selection b), the TOE has no visibility into the inner workings and

completely relies on the underlying platform, so there is no reason to test the TOE

beyond test 1.

44 For selection a), the following tests are used to determine the TOE is able to request

the platform to overwrite the key with a TOE supplied pattern.

45 Test 2: Applied to each key held in non-volatile memory and subject to destruction by

overwrite by the TOE. The evaluator shall use a tool that provides a logical view of

the media (e.g., MBR file system):

1. Record the value of the key in the TOE subject to clearing.

2. Cause the TOE to perform a normal cryptographic processing with

the key from Step #1.

3. Cause the TOE to clear the key.

4. Search the logical view that the key was stored in for instances of the

known key value from Step #1. If a copy is found, then the test fails.

5. Break the key value from Step #1 into 3 similar sized pieces and

perform a search using each piece. If a fragment is found then the test

is repeated (as described for Use Case 1 test 1 above), and if a

fragment is found in the repeated test then the test fails.

46 Test 3: Applied to each key held as non-volatile memory and subject to destruction by

overwrite by the TOE. The evaluator shall use a tool that provides a logical view of

the media:

1. Record the logical storage location of the key in the TOE subject to

clearing.

2. Cause the TOE to perform a normal cryptographic processing with

the key from Step #1.

3. Cause the TOE to clear the key.

4. Read the logical storage location in Step #1 of non-volatile memory

to ensure the appropriate pattern is utilized.

47 The test succeeds if correct pattern is used to overwrite the key in the memory

location. If the pattern is not found the test fails.

2.1.2.3 FCS_CKM_EXT.4(a) Cryptographic Key and Key Material Destruction
(Destruction Timing)

2.1.2.3.1 TSS

48 The evaluator shall verify the TSS provides a high level description of what it means

for keys and key material to be no longer needed and when then should be expected

to be destroyed.

2.1.2.3.2 Operational Guidance

49 There are no AGD evaluation activities for this SFR.

2.1.2.3.3 KMD

50 The evaluator shall verify the KMD includes a description of the areas where keys

and key material reside and when the keys and key material are no longer needed.

51 The evaluator shall verify the KMD includes a key lifecycle, that includes a

description where key material reside, how the key material is used, how it is

determined that keys and key material are no longer needed, and how the material is

destroyed once it is not needed and that the documentation in the KMD follows

FCS_CKM.4(a) for the destruction.

2.1.2.3.4 Test

52 There are no test evaluation activities for this SFR.

2.1.2.4 FCS_CKM_EXT.4(b) Cryptographic Key and Key Material Destruction
(Power Management)

2.1.2.4.1 TSS

53 The evaluator shall verify the TSS provides a description of what keys and key

material are destroyed when entering any Compliant power saving state.

2.1.2.4.2 Operational Guidance

54 The evaluator shall validate that guidance documentation contains clear warnings and

information on conditions in which the TOE may end up in a non-Compliant power

saving state indistinguishable from a Compliant power saving state. In that case it

must contain mitigation instructions on what to do in such scenarios.

2.1.2.4.3 KMD

55 The evaluator shall verify the KMD includes a description of the areas where keys

and key material reside.

56 The evaluator shall verify the KMD includes a key lifecycle that includes a

description where key material reside, how the key material is used, and how the

material is destroyed once it is not needed and that the documentation in the KMD

follows FCS_CKM.4(b) for the destruction.

2.1.2.4.4 Test

57 There are no test evaluation activities for this SFR.

2.1.3 Key Chaining (FCS_KYC)

2.1.3.1 FCS_KYC_EXT.1 Key Chaining (Initiator)

2.1.3.1.1 TSS

58 The evaluator shall verify the TSS contains a high-level description of the BEV sizes

– that it supports BEV outputs of no fewer 128 bits for products that support only

AES-128, and no fewer than 256 bits for products that support AES-256.

2.1.3.1.2 Operational Guidance

59 There are no AGD evaluation activities for this SFR.

2.1.3.1.3 KMD

60 The evaluator shall examine the KMD describes a high level description of the key

hierarchy for all authorizations methods selected in FCS_AFA_EXT.1 that are used

to protect the BEV. The evaluator shall examine the KMD to ensure it describes the

key chain in detail. The description of the key chain shall be reviewed to ensure it

maintains a chain of keys using key wrap or key derivation methods that meet

FCS_COP.1(d) and FCS_KDF_EXT.1.

61 The evaluator shall examine the KMD to ensure that it describes how the key chain

process functions, such that it does not expose any material that might compromise

any key in the chain. (e.g. using a key directly as a compare value against a TPM)

This description must include a diagram illustrating the key hierarchy implemented

and detail where all keys and keying material is stored or what it is derived from. The

evaluator shall examine the key hierarchy to ensure that at no point the chain could be

broken without a cryptographic exhaust or the initial authorization value and the

effective strength of the BEV is maintained throughout the key chain.

62 The evaluator shall verify the KMD includes a description of the strength of keys

throughout the key chain.

2.1.3.1.4 Test

63 There are no test evaluation activities for this SFR.

2.1.4 Cryptographic Operation (FCS_SNI)

2.1.4.1 FCS_SNI_EXT.1 Cryptographic Operation (Salt, Nonce, and
Initialization Vector Generation)

2.1.4.1.1 TSS

64 The evaluator shall ensure the TSS describes how salts are generated. The evaluator

shall confirm that the salt is generating using an RBG described in FCS_RBG_EXT.1

or by the Operational Environment. If external function is used for this purpose, the

TSS should include the specific API that is called with inputs.

65 The evaluator shall ensure the TSS describes how nonces are created uniquely and

how IVs and tweaks are handled (based on the AES mode). The evaluator shall

confirm that the nonces are unique and the IVs and tweaks meet the stated

requirements.

2.1.4.1.2 Operational Guidance

66 There are no AGD evaluation activities for this SFR.

2.1.4.1.3 KMD

67 There are no KMD evaluation activities for this SFR.

2.1.4.1.4 Test

68 There are no test evaluation activities for this SFR.

2.2 Security Management (FMT)

2.2.1 Management of functions in TSF (FMT_MOF)

2.2.1.1 FMT_MOF.1 Management of Functions Behavior

2.2.1.1.1 TSS

69 If support for Compliant power saving state(s) are claimed in the ST, the evaluator

shall ensure the TSS describes how these are managed and shall ensure that TSS

describes how only privileged users (administrators) are allowed to manage the states.

2.2.1.1.2 Operational Guidance

70 The evaluator to check if guidance documentation describes which authorization

factors are required to change Compliant power saving state behavior and properties.

2.2.1.1.3 KMD

71 There are no KMD evaluation activities for this SFR.

2.2.1.1.4 Test

72 The evaluator shall perform the following tests:

73 Test 1: The evaluator presents a privileged authorization credential to the TSF and

validates that changes to Compliant power saving state behavior and properties are

allowed.

74 Test 2: The evaluator presents a non-privileged authorization credential to the TSF

and validates that changes to Compliant power saving state behavior are not allowed.

2.2.2 Specifications of Management Functions (FMT_SMF)

2.2.2.1 FMT_SMF.1 Specification of Management Functions

2.2.2.1.1 TSS

75 Option A: The evaluator shall ensure the TSS describes how the TOE sends the

request to the EE to change the DEK.

76 Option B: The evaluator shall ensure the TSS describes how the TOE sends the

request to the EE to cryptographically erase the DEK.

77 Option C: The evaluator shall ensure the TSS describes the methods by which users

may change the set of all authorization factor values supported.

78 Option D: The evaluator shall ensure the TSS describes the process to initiate TOE

firmware/software updates.

79 Option E: If power saving states can be managed, the evaluator shall ensure that the

TSS describes how this is performed, including how the TOE supports disabling

certain power saving states if more than one are supported. If additional management

functions are claimed in the ST, the evaluator shall ensure the TSS describes the

additional functions.

2.2.2.1.2 Operational Guidance

80 Option A + B: The evaluator shall examine the operational guidance to ensure that it

describes how the functions for A and B can be initiated by the user.

81 Option C: The evaluator shall examine the operational guidance to ensure that it

describes how selected authorization factor values are changed.

82 Option D: The evaluator shall examine the operational guidance to ensure that it

describes how to initiate TOE firmware/software updates.

83 Option E: Default Authorization Factors: It may be the case that the TOE arrives with

default authorization factors in place. If it does, then the selection in section E must

be made so that there is a mechanism to change these authorization factors. The

operational guidance shall describe the method by which the user changes these

factors when they are taking ownership of the device. The TSS shall describe the

default authorization factors that exist.

84 Disable Key Recovery: The guidance for disabling this capability shall be described

in the AGD documentation.

85 Power Saving: The guidance shall describe the power saving states that are supported

by the TSF, how these states are applied, how to configure when these states are

applied (if applicable), and how to enable/disable the use of specific power saving

states (if applicable).

2.2.2.1.3 KMD

86 There are no KMD evaluation activities for this SFR.

2.2.2.1.4 Test

87 Option A and B: The evaluator shall verify that the TOE has the functionality to

forward a command to the EE to change and cryptographically erase the DEK. The

actual testing of the cryptographic erase will take place in the EE.

88 Option C: The evaluator shall initialize the TOE such that it requires the user to input

an authorization factor in order to access encrypted data.

Test 1: The evaluator shall first provision user authorization factors, and then

verify all authorization values supported allow the user access to the encrypted

data. Then the evaluator shall exercise the management functions to change a

user’s authorization factor values to a new one. Then he or she will verify that the

TOE denies access to the user’s encrypted data when he or she uses the old or

original authorization factor values to gain access.

89 Option D: The evaluator shall verify that the TOE has the functionality to initiate

TOE firmware/software updates.

90 Option E: If additional management functions are claimed, the evaluator shall verify

that the additional features function as described.

Test 2: [conditional] If the TOE provides default authorization factors, the

evaluator shall change these factors in the course of taking ownership of the

device as described in the operational guidance. The evaluator shall then confirm

that the (old) authorization factors are no longer valid for data access.

Test 3 [conditional] If the TOE provides key recovery capability whose effects

are visible at the TOE interface, then the evaluator shall devise a test that ensures

that the key recovery capability has been or can be disabled following the

guidance provided by the vendor.

Test 4 [conditional] If the TOE provides the ability to configure the power saving

states that are entered by certain events, the evaluator shall devise a test that

causes the TOE to enter a specific power saving state, configure the TSF so that

this activity causes a different state to be entered, repeat the activity, and observe

the new state is entered as configured.

Test 5 [conditional] If the TOE provides the ability to disable the use of one or

more power saving states, the evaluator shall devise a test that enables all

supported power saving states and demonstrates that the TOE can enter into each

of these states. The evaluator shall then disable the supported power saving states

one by one, repeating the same set of actions that were performed at the start of

the test, and observe each time that when a power saving state is configured to no

longer be used, none of the behavior causes the disabled state to be entered.

2.3 Protection of the TSF (FPT)

2.3.1 Key and Key Material Protection (FPT_KYP)

2.3.1.1 FPT_KYP_EXT.1 Protection of Key and Key Material

2.3.1.1.1 TSS

91 The evaluator shall examine the TSS to verify that it describes the method by which

intermediate keys are generated using submask combining.

2.3.1.1.2 Operational Guidance

92 There are no AGD evaluation activities for this SFR.

2.3.1.1.3 KMD

93 The evaluator shall examine the KMD for a description of the methods used to protect

keys stored in non-volatile memory.

94 The evaluator shall verify the KMD to ensure it describes the storage location of all

keys and the protection of all keys stored in non-volatile memory. The description of

the key chain shall be reviewed to ensure the selected method is followed for the

storage of wrapped or encrypted keys in non-volatile memory and plaintext keys in

non-volatile memory meet one of the criteria for storage.

2.3.1.1.4 Test

95 There are no test evaluation activities for this SFR.

2.3.2 Power Management (FPT_PWR)

2.3.2.1 FPT_PWR_EXT.1 Power Saving States

2.3.2.1.1 TSS

96 The evaluator shall validate the TSS contains a list of Compliant power saving states.

2.3.2.1.2 Operational Guidance

97 The evaluator shall ensure that guidance documentation contains a list of Compliant

power saving states. If additional power saving states are supported, then the

evaluator shall validate that the guidance documentation states how non-Compliant

power states are disabled.

2.3.2.1.3 KMD

98 There are no KMD evaluation activities for this SFR.

2.3.2.1.4 Test

99 The evaluator shall confirm that for each listed Compliant state all key/key materials

are removed from volatile memory by using the test defined in FCS_CKM.4(b).

2.3.2.2 FPT_PWR_EXT.2 Timing of Power Saving States

2.3.2.2.1 TSS

100 The evaluator shall validate that the TSS contains a list of conditions under which the

TOE enters a Compliant power saving state.

2.3.2.2.2 Operational Guidance

101 The evaluator shall check that the guidance contains a list of conditions under which

the TOE enters a Compliant power saving state. Additionally, the evaluator shall

verify that the guidance documentation states whether unexpected power-loss events

may result in entry to a non-Compliant power saving state and, if that is the case,

validate that the documentation contains information on mitigation measures.

2.3.2.2.3 KMD

102 There are no KMD evaluation activities for this SFR.

2.3.2.2.4 Test

103 The evaluator shall trigger each condition in the list of identified conditions and

ensure the TOE ends up in a Complaint power saving state by running the test

identified in FCS_CKM.4(b).

2.3.3 Trusted Update (FPT_TUD)

2.3.3.1 FPT_TUD_EXT.1 Trusted Update

2.3.3.1.1 TSS

104 The evaluator shall examine the TSS to ensure that it describes information stating

that an authorized source signs TOE updates and will have an associated digital

signature. The evaluator shall examine the TSS contains a definition of an authorized

source along with a description of how the TOE uses public keys for the update

verification mechanism in the Operational Environment. The evaluator ensures the

TSS contains details on the protection and maintenance of the TOE update

credentials.

105 If the Operational Environment performs the signature verification, then the evaluator

shall examine the TSS to ensure it describes, for each platform identified in the ST,

the interface(s) used by the TOE to invoke this cryptographic functionality.

2.3.3.1.2 Operational Guidance

106 The evaluator ensures that the operational guidance describes how the TOE obtains

vendor updates to the TOE; the processing associated with verifying the digital

signature of the updates (as defined in FCS_COP.1(a)); and the actions that take place

for successful and unsuccessful cases.

2.3.3.1.3 KMD

107 There are no KMD evaluation activities for this SFR.

2.3.3.1.4 Test

108 The evaluators shall perform the following tests (if the TOE supports multiple

signatures, each using a different hash algorithm, then the evaluator performs tests for

different combinations of authentic and unauthentic digital signatures and hashes, as

well as for digital signature alone):

109 Test 1: The evaluator performs the version verification activity to determine the

current version of the TOE. After the update tests described in the following tests, the

evaluator performs this activity again to verify that the version correctly corresponds

to that of the update.

110 Test 2: The evaluator obtains a legitimate update using procedures described in the

operational guidance and verifies that an update successfully installs on the TOE. The

evaluator shall perform a subset of other evaluation activity tests to demonstrate that

the update functions as expected.

3 Evaluation Activities for Optional
Requirements

3.1 Protection of the TSF (FPT)

3.1.1 TSF Testing (FPT_TST)

3.1.1.1 FPT_TST_EXT.1 TSF Testing

3.1.1.1.1 TSS

111 The evaluator shall verify that the TSS describes the known-answer self-tests for

cryptographic functions.

112 The evaluator shall verify that the TSS describes, for some set of non-cryptographic

functions affecting the correct operation of the TOE and the method by which the

TOE tests those functions. The evaluator shall verify that the TSS includes each of

these functions, the method by which the TOE verifies the correct operation of the

function. The evaluator shall verify that the TSF data are appropriate for TSF Testing.

For example, more than blocks are tested for AES in CBC mode, output of AES in

GCM mode is tested without truncation, or 512-bit key is used for testing HMAC-

SHA-512.

113 If FCS_RBG_EXT.1 is implemented by the TOE and according to NIST SP 800-90,

the evaluator shall verify that the TSS describes health tests that are consistent with

section 11.3 of NIST SP 800-90.

114 If any FCS_COP functions are implemented by the TOE, the TSS shall describe the

known-answer self-tests for those functions.

115 The evaluator shall verify that the TSS describes, for some set of non-cryptographic

functions affecting the correct operation of the TSF, the method by which those

functions are tested. The TSS will describe, for each of these functions, the method

by which correct operation of the function/component is verified. The evaluator shall

determine that all of the identified functions/components are adequately tested on

start-up.

3.1.1.1.2 Operational Guidance

116 There are no AGD evaluation activities for this SFR.

3.1.1.1.3 KMD

117 There are no KMD evaluation activities for this SFR.

3.1.1.1.4 Test

118 There are no test evaluation activities for this SFR.

4 Evaluation Activities for Selection-Based
Requirements

4.1 Cryptographic Support (FCS)

4.1.1 Cryptographic Key Management (FCS_CKM)

4.1.1.1 FCS_CKM.1(a) Cryptographic Key Generation (Asymmetric Keys)

4.1.1.1.1 TSS

119 The evaluator shall ensure that the TSS identifies the key sizes supported by the TOE.

If the ST specifies more than one scheme, the evaluator shall examine the TSS to

verify that it identifies the usage for each scheme.

4.1.1.1.2 Operational Guidance

120 The evaluator shall verify that the AGD guidance instructs the administrator how to

configure the TOE to use the selected key generation scheme(s) and key size(s) for all

uses specified by the AGD documentation and defined in this cPP.

4.1.1.1.3 KMD

121 If the TOE uses an asymmetric key as part of the key chain, the KMD should detail

how the asymmetric key is used as part of the key chain.

4.1.1.1.4 Test

122 The following tests require the developer to provide access to a test platform that

provides the evaluator with tools that are typically not found on factory products.

123 Key Generation for FIPS PUB 186-4 RSA Schemes

124 The evaluator shall verify the implementation of RSA Key Generation by the TOE

using the Key Generation test. This test verifies the ability of the TSF to correctly

produce values for the key components including the public verification exponent e,

the private prime factors p and q, the public modulus n and the calculation of the

private signature exponent d.

125 Key Pair generation specifies 5 ways (or methods) to generate the primes p and q.

These include:

126 1. Random Primes:

 Provable primes

 Probable primes

127 2. Primes with Conditions:

 Primes p1, p2, q1,q2, p and q shall all be provable primes

 Primes p1, p2, q1, and q2 shall be provable primes and p and q shall be

probable primes

 Primes p1, p2, q1,q2, p and q shall all be probable primes

128 To test the key generation method for the Random Provable primes method and for

all the Primes with Conditions methods, the evaluator must seed the TSF key

generation routine with sufficient data to deterministically generate the RSA key pair.

This includes the random seed(s), the public exponent of the RSA key, and the

desired key length. For each key length supported, the evaluator shall have the TSF

generate 25 key pairs. The evaluator shall verify the correctness of the TSF’s

implementation by comparing values generated by the TSF with those generated from

a known good implementation.

129 Key Generation for Elliptic Curve Cryptography (ECC)

130 FIPS 186-4 ECC Key Generation Test

131 For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall

require the implementation under test (IUT) to generate 10 private/public key pairs.

The private key shall be generated using an approved random bit generator (RBG).

To determine correctness, the evaluator shall submit the generated key pairs to the

public key verification (PKV) function of a known good implementation.

132 FIPS 186-4 Public Key Verification (PKV) Test

For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall

generate 10 private/public key pairs using the key generation function of a known

good implementation and modify five of the public key values so that they are

incorrect, leaving five values unchanged (i.e., correct). The evaluator shall obtain in

response a set of 10 PASS/FAIL values.

133 Key Generation for Finite-Field Cryptography (FFC)

134 The evaluator shall verify the implementation of the Parameters Generation and the

Key Generation for FFC by the TOE using the Parameter Generation and Key

Generation test. This test verifies the ability of the TSF to correctly produce values

for the field prime p, the cryptographic prime q (dividing p-1), the cryptographic

group generator g, and the calculation of the private key x and public key y.

135 The Parameter generation specifies 2 ways (or methods) to generate the cryptographic

prime q and the field prime p:

136 Cryptographic and Field Primes:

 Primes q and p shall both be provable primes

 Primes q and field prime p shall both be probable primes

and two ways to generate the cryptographic group generator g:

137

138 Cryptographic Group Generator:

 Generator g constructed through a verifiable process

 Generator g constructed through an unverifiable process.

139 The Key generation specifies 2 ways to generate the private key x:

140 Private Key:

 len(q) bit output of RBG where 1 <=x <= q-1

 len(q) + 64 bit output of RBG, followed by a mod q-1 operation and +1

operation where 1<= x<=q-1.

141 The security strength of the RBG must be at least that of the security offered by the

FFC parameter set.

142 To test the cryptographic and field prime generation method for the provable primes

method and/or the group generator g for a verifiable process, the evaluator must seed

the TSF parameter generation routine with sufficient data to deterministically

generate the parameter set.

143 For each key length supported, the evaluator shall have the TSF generate 25

parameter sets and key pairs. The evaluator shall verify the correctness of the TSF’s

implementation by comparing values generated by the TSF with those generated from

a known good implementation. Verification must also confirm

 g != 0,1

 q divides p-1

 g^q mod p = 1

 g^x mod p = y

 for each FFC parameter set and key pair.

4.1.1.2 FCS_CKM.1(b) Cryptographic Key Generation (Symmetric Keys)

4.1.1.2.1 TSS

144 The evaluator shall review the TSS to determine that a symmetric key is supported by

the product, that the TSS includes a description of the protection provided by the

product for this key. The evaluator shall ensure that the TSS identifies the key sizes

supported by the TOE.

4.1.1.2.2 Operational Guidance

145 The evaluator shall verify that the AGD guidance instructs the administrator how to

configure the TOE to use the selected key size(s) for all uses specified by the AGD

documentation and defined in this cPP.

4.1.1.2.3 KMD

146 If the TOE uses a symmetric key as part of the key chain, the KMD should detail how

the symmetric key is used as part of the key chain.

4.1.1.2.4 Test

147 There are no test evaluation activities for this SFR.

4.1.2 Cryptographic Operation (FCS_COP)

4.1.2.1 FCS_COP.1(a) Cryptographic Operation (Signature Verification)

148 This requirement is used to verify digital signatures attached to updates from the TOE

manufacturer before installing those updates on the TOE. Because this component is

to be used in the update function, additional Evaluation Activities to those listed

below are covered in other evaluation activities sections in this document. The

following activities deal only with the implementation for the digital signature

algorithm; the evaluator performs the testing appropriate for the algorithm(s) selected

in the component.

149 Hash functions and/or random number generation required by these algorithms must

be specified in the ST; therefore the Evaluation Activities associated with those

functions are contained in the associated Cryptographic Hashing and Random Bit

Generation sections. Additionally, the only function required by the TOE is the

verification of digital signatures. If the TOE generates digital signatures to support

the implementation of any functionality required by this cPP, then the applicable

evaluation and validation scheme must be consulted to determine the required

evaluation activities.

4.1.2.1.1 TSS

150 The evaluator shall check the TSS to ensure that it describes the overall flow of the

signature verification. This should at least include identification of the format and

general location (e.g., "firmware on the hard drive device" rather than “memory

location 0x00007A4B") of the data to be used in verifying the digital signature; how

the data received from the operational environment are brought on to the device; and

any processing that is performed that is not part of the digital signature algorithm (for

instance, checking of certificate revocation lists).

4.1.2.1.2 Operational Guidance

151 There are no AGD evaluation activities for this SFR.

4.1.2.1.3 KMD

152 There are no KMD evaluation activities for this SFR.

4.1.2.1.4 Test

153 Each section below contains the tests the evaluators must perform for each type of

digital signature scheme. Based on the assignments and selections in the requirement,

the evaluators choose the specific activities that correspond to those selections.

154 It should be noted that for the schemes given below, there are no key

generation/domain parameter generation testing requirements. This is because it is not

anticipated that this functionality would be needed in the end device, since the

functionality is limited to checking digital signatures in delivered updates. This means

that the domain parameters should have already been generated and encapsulated in

the hard drive firmware or on-board non-volatile storage. If key generation/domain

parameter generation is required, the evaluation and validation scheme must be

consulted to ensure the correct specification of the required evaluation activities and

any additional components.

155 The following tests are conditional based upon the selections made within the SFR.

156 The following tests may require the developer to provide access to a test platform that

provides the evaluator with tools that are typically not found on factory products.

157 ECDSA Algorithm Tests

158 ECDSA FIPS 186-4 Signature Verification Test

 For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair,

the evaluator shall generate a set of 10 1024-bit message, public key and signature

tuples and modify one of the values (message, public key or signature) in five of the

10 tuples. The evaluator shall obtain in response a set of 10 PASS/FAIL values.

159 RSA Signature Algorithm Tests

160 Signature Verification Test

161 The evaluator shall perform the Signature Verification test to verify the ability of the

TOE to recognize another party’s authentic and unauthentic signatures. The evaluator

shall inject errors into the test vectors produced during the Signature Verification Test

by introducing errors in some of the public keys e, messages, IR format, and/or

signatures. The TOE attempts to verify the signatures and returns success or failure.

162 The evaluator shall use these test vectors to emulate the signature verification test

using the corresponding parameters and verify that the TOE detects these errors.

4.1.2.2 FCS_COP.1(b) Cryptographic Operation (Hash Algorithm)

4.1.2.2.1 TSS

163 The evaluator shall check that the association of the hash function with other TSF

cryptographic functions (for example, the digital signature verification function) is

documented in the TSS.

4.1.2.2.2 Operational Guidance

164 The evaluator checks the operational guidance documents to determine that any

system configuration necessary to enable required hash size functionality is provided.

4.1.2.2.3 KMD

165 There are no KMD evaluation activities for this SFR.

4.1.2.2.4 Test

166 The TSF hashing functions can be implemented in one of two modes. The first mode

is the byte-oriented mode. In this mode the TSF only hashes messages that are an

integral number of bytes in length; i.e., the length (in bits) of the message to be

hashed is divisible by 8. The second mode is the bit¬oriented mode. In this mode the

TSF hashes messages of arbitrary length. As there are different tests for each mode,

an indication is given in the following sections for the bit¬oriented vs. the

byte¬oriented test mode.

167 The evaluator shall perform all of the following tests for each hash algorithm

implemented by the TSF and used to satisfy the requirements of this cPP.

168 Short Messages Test Bit¬oriented Mode

169 The evaluators devise an input set consisting of m+1 messages, where m is the block

length of the hash algorithm. The length of the messages range sequentially from 0 to

m bits. The message text shall be pseudorandomly generated. The evaluators compute

the message digest for each of the messages and ensure that the correct result is

produced when the messages are provided to the TSF.

170 Short Messages Test Byte¬oriented Mode

171 The evaluators devise an input set consisting of m/8+1 messages, where m is the

block length of the hash algorithm. The length of the messages range sequentially

from 0 to m/8 bytes, with each message being an integral number of bytes. The

message text shall be pseudorandomly generated. The evaluators compute the

message digest for each of the messages and ensure that the correct result is produced

when the messages are provided to the TSF.

172 Selected Long Messages Test Bit¬oriented Mode

173 The evaluators devise an input set consisting of m messages, where m is the block

length of the hash algorithm. For SHA-256, the length of the i-th message is 512 +

8*99*i, where 1 ≤ i ≤ m/8. For SHA-512, the length of the i-th message is 1024 +

8*99*i, where 1 ≤ i ≤ m/8. The message text shall be pseudorandomly generated. The

evaluators compute the message digest for each of the messages and ensure that the

correct result is produced when the messages are provided to the TSF.

174 Selected Long Messages Test Byte¬oriented Mode

175 The evaluators devise an input set consisting of m/8 messages, where m is the block

length of the hash algorithm. For SHA-256, the length of the i-th message is 512 +

99*i, where 1 ≤ i ≤ m. For SHA-512, the length of the i-th message is 1024 + 99*i,

where 1 ≤ i ≤ m. The message text shall be pseudorandomly generated. The

evaluators compute the message digest for each of the messages and ensure that the

correct result is produced when the messages are provided to the TSF.

176 Pseudorandomly Generated Messages Test

177 This test is for byte¬oriented implementations only. The evaluators randomly

generate a seed that is n bits long, where n is the length of the message digest

produced by the hash function to be tested. The evaluators then formulate a set of 100

messages and associated digests by following the algorithm provided in Figure 1 of

[SHAVS]. The evaluators then ensure that the correct result is produced when the

messages are provided to the TSF.

4.1.2.3 FCS_COP.1(c) Cryptographic Operation (Keyed Hash Algorithm)

4.1.2.3.1 TSS

178 If HMAC was selected:

179 The evaluator shall examine the TSS to ensure that it specifies the following values

used by the HMAC function: key length, hash function used, block size, and output

MAC length used.

180 If CMAC was selected:

181 The evaluator shall examine the TSS to ensure that it specifies the following

values used by the CMAC function: key length, block cipher used, block size

(of the cipher), and output MAC length used.

4.1.2.3.2 Operational Guidance

182 There are no AGD evaluation activities for this SFR.

4.1.2.3.3 KMD

183 There are no KMD evaluation activities for this SFR.

4.1.2.3.4 Test

184 If HMAC was selected:

185 For each of the supported parameter sets, the evaluator shall compose 15 sets of test

data. Each set shall consist of a key and message data. The evaluator shall have the

TSF generate HMAC tags for these sets of test data. The resulting MAC tags shall be

compared to the result of generating HMAC tags with the same key using a known

good implementation.

186 If CMAC was selected:

187 For each of the supported parameter sets, the evaluator shall compose at least

15 sets of test data. Each set shall consist of a key and message data. The test

data shall include messages of different lengths, some with partial blocks as

the last block and some with full blocks as the last block. The test data keys

shall include cases for which subey K1 is generated both with and without

using the irreducible polynomial R_b, as well as cases for which subkey K2 is

generated from K1 both with and without using the irreducible polynomial

R_b. (The subkey generation and polynomial R_b are as defined in SP800-

38E.) The evaluator shall have the TSF generate CMAC tags for these sets of

test data. The resulting MAC tags shall be compared to the result of generating

CMAC tags with the same key using a known good implementation.

4.1.2.4 FCS_COP.1(d) Cryptographic Operation (Key Wrapping)

4.1.2.4.1 TSS

188 The evaluator shall verify the TSS includes a description of the key wrap function(s)

and shall verify the key wrap uses an approved key wrap algorithm according to the

appropriate specification.

4.1.2.4.2 Operational Guidance

189 There are no AGD evaluation activities for this SFR.

4.1.2.4.3 KMD

190 The evaluator shall review the KMD to ensure that all keys are wrapped using the

approved method and a description of when the key wrapping occurs.

4.1.2.4.4 Test

191 There are no test evaluation activities for this SFR.

4.1.2.5 FCS_COP.1(e) Cryptographic Operation (Key Transport)

4.1.2.5.1 TSS

192 The evaluator shall verify the TSS provides a high level description of the RSA

scheme and the cryptographic key size that is being used, and that the asymmetric

algorithm being used for key transport is RSA. If more than one scheme/key size are

allowed, then the evaluator shall make sure and test all combinations of scheme and

key size. There may be more than one key size to specify – an RSA modulus size

(and/or encryption exponent size), an AES key size, hash sizes, MAC key/MAC tag

size.

193 If the KTS-OAEP scheme was selected, the evaluator shall verify that the TSS

identifies the hash function, the mask generating function, the random bit generator,

the encryption primitive and decryption primitive.

194 If the KTS-KEM-KWS scheme was selected, the evaluator shall verify that the TSS

identifies the key derivation method, the AES-based key wrapping method, the secret

value encapsulation technique, and the random number generator.

4.1.2.5.2 Operational Guidance

195 There are no AGD evaluation activities for this SFR.

4.1.2.5.3 KMD

196 There are no KMD evaluation activities for this SFR.

4.1.2.5.4 Test

197 For each supported key transport schema, the evaluator shall initiate at least 25

sessions that require key transport with an independently developed remote instance

of a key transport entity, using known RSA key-pairs. The evaluator shall observe

traffic passed from the sender-side and to the receiver-side of the TOE, and shall

perform the following tests, specific to which key transport scheme was employed.

198 If the KTS-OAEP scheme was selected, the evaluator shall perform the following

tests:

1. The evaluator shall inspect each cipher text, C, produced by the RSA-OAEP

encryption operation of the TOE and make sure it is the correct length, either

256 or 384 bytes depending on RSA key size. The evaluator shall also feed into

the TOE’s RSA-OEAP decryption operation some cipher texts that are the

wrong length and verify that the erroneous input is detected and that the

decryption operation exits with an error code.

2. The evaluator shall convert each cipher text, C, produced by the RSA-OAEP

encryption operation of the TOE to the correct cipher text integer, c, and use the

decryption primitive to compute em = RSADP((n,d),c) and convert em to the

encoded message EM. The evaluator shall then check that the first byte of EM

is 0x00. The evaluator shall also feed into the TOE’s RSA-OEAP decryption

operation some cipher texts where the first byte of EM was set to a value other

than 0x00, and verify that the erroneous input is detected and that the decryption

operation exits with an error code.

3. The evaluator shall decrypt each cipher text, C, produced by the RSA-OAEP

encryption operation of the TOE using RSADP, and perform the OAEP

decoding operation (described in NIST SP 800-56B section 7.2.2.4) to recover

HA’ || X. For each HA’, the evalutor shall take the corresponding A and the

specified hash algorithm and verify that HA' = Hash(A). The evaluator

should[shall?] also force the TOE to perform some RSA-OAEP decryptions

where the A value is passed incorrectly, and the evaluator should[shall?] verify

that an error is detected.

4. The evaluator shall check the format of the ‘X’ string recovered in OAEP.Test.3

to ensure that the format is of the form PS || 01 || K, where PS consists of zero or

more consecutive 0x00 bytes and K is the transported keying material. The

evaluator should[shall?] also feed into the TOE’s RSA-OEAP decryption

operation some cipher texts for which the resulting ‘X’ strings do not have the

correct format (i.e., the leftmost non-zero byte is not 0x01). These incorrectly

formatted ‘X’ variables should[shall?] be detected by the RSA-OEAP decrypt

function.

5. The evaluator shall trigger all detectable decryption errors and validate that the

returned error codes are the same and that no information is given back to the

sender on which type of error occurred. The evaluator shall also validate that no

intermediate results from the TOE’s receiver-side operations are revealed to the

sender.

199 If the KTS-KEM-KWS scheme was selected, the evaluator shall perform the

following tests:

1. The evaluator shall inspect each cipher text, C, produced by RSA-KEM-KWS

encryption operation of the TOE and make sure the length (in bytes) of the

cipher text, cLen, is greater than nLen (the length, in bytes, of the modulus of

the RSA public key) and that cLen - nLen is consistent with the byte lengths

supported by the key wrapping algorithm. The evaluator shall feed into the

RSA-KEM-KWS decryption operation a cipher text of unsupported length and

verify that an error is detected and that the decryption process stops.

2. The evaluator shall separate the cipher text, C, produced by the sender-side of

the TOE into its C0 and C1 components and use the RSA decryption primitive to

recover the secret value, Z, from C0. The evaluator shall check that the

unsigned integer represented by Z is greater than 1 and less than n-1, where n is

the modulus of the RSA public key. The evaluator shall construct examples

where the cipher text is created with a secret value Z = 1 and make sure the

RSA-KEM-KWS decryption process detects the error. Similarly, the evaluator

shall construct examples where the cipher text is created with a secret value Z =

n – 1 and make sure the RSA-KEM-KWS decryption process detects the error.

3. The evaluator shall attempt to successfully recover the secret value Z, derive the

key wrapping key, KWK, and unwrap the KWA-cipher text following the RSA-

KEM-KWS decryption process given in NISP SP 800-56B section 7.2.3.4. If the

key-wrapping algorithm is AES-CCM, the evaluator shall verify that the value

of any (unwrapped) associated data, A, that was passed with the wrapped keying

material is correct The evaluator shall feed into the TOE’s RSA-KEM-KWS

decryption operation examples of incorrect cipher text and verify that a

decryption error is detected. If the key-wrapping algorithm is AES-CCM, the

evaluator shall attempt at least one decryption where the wrong value of A is

given to the RSA-KEM-KWS decryption operation and verify that a decryption

error is detected. Similarly, if the key-wrapping algorithm is AES-CCM, the

evaluator shall attempt at least one decryption where the wrong nonce is given to

the RSA-KEM-KWS decryption operation and verify that a decryption error is

detected.

4. The evaluator shall trigger all detectable decryption errors and validate that the

resulting error codes are the same and that no information is given back to the

sender on which type of error occurred. The evaluator shall also validate that no

intermediate results from the TOE’s receiver-side operations (in particular, no Z

values) are revealed to the sender.

4.1.2.6 FCS_COP.1(f) Cryptographic Operation (AES Data
Encryption/Decryption)

4.1.2.6.1 TSS

200 The evaluator shall verify the TSS includes a description of the key size used for

encryption and the mode used for encryption.

4.1.2.6.2 Operational Guidance

201 If multiple encryption modes are supported, the evaluator examines the guidance

documentation to determine that the method of choosing a specific mode/key size by

the end user is described.

4.1.2.6.3 KMD

202 There are no KMD evaluation activities for this SFR.

4.1.2.6.4 Test

203 The following tests are conditional based upon the selections made in the SFR.

204 AES-CBC Tests

205 For the AES-CBC tests described below, the plaintext, ciphertext, and IV

values shall consist of 128-bit blocks. To determine correctness, the evaluator

shall compare the resulting values to those obtained by submitting the same

inputs to a known-good implementation.

206 These tests are intended to be equivalent to those described in NIST’s AES

Algorithm Validation Suite (AESAVS)

(http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf). Known

answer values tailored to exercise the AES-CBC implementation can be

obtained using NIST’s CAVS Algorithm Validation Tool or from NIST’s

ACPV service for automated algorithm tests (acvp.nist.gov), when available.

It is not recommended that evaluators use values obtained from static sources

such as the example NIST’s AES Known Answer Test Values from the

AESAVS document, or use values not generated expressly to exercise the

AES-CBC implementation.

207 AES-CBC Known Answer Tests

208

209 KAT-1 (GFSBox):

210 To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of five

different plaintext values for each selected key size and obtain the ciphertext value

that results from AES-CBC encryption of the given plaintext using a key value of all

zeros and an IV of all zeros.

211 To test the decrypt functionality of AES-CBC, the evaluator shall supply a set of five

different ciphertext values for each selected key size and obtain the plaintext value

that results from AES-CBC decryption of the given ciphertext using a key value of all

zeros and an IV of all zeros.

http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf
http://acvp.nist.gov/

212 KAT-2 (KeySBox):

213 To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of five

different key values for each selected key size and obtain the ciphertext value that

results from AES-CBC encryption of an all-zeros plaintext using the given key value

and an IV of all zeros.

214 To test the decrypt functionality of AES-CBC, the evaluator shall supply a set of five

different key values for each selected key size and obtain the plaintext that results

from AES-CBC decryption of an all-zeros ciphertext using the given key and an IV of

all zeros.

215 KAT-3 (Variable Key):

216 To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of keys

for each selected key size (as described below) and obtain the ciphertext value that

results from AES encryption of an all-zeros plaintext using each key and an IV of all

zeros.

217 Key i in each set shall have the leftmost i bits set to ones and the remaining bits to

zeros, for values of i from 1 to the key size. The keys and corresponding ciphertext

are listed in AESAVS, Appendix E.

218 To test the decrypt functionality of AES-CBC, the evaluator shall use the same keys

as above to decrypt the ciphertext results from above. Each decryption should result

in an all-zeros plaintext.

219 KAT-4 (Variable Text):

220 To test the encrypt functionality of AES-CBC, for each selected key size, the

evaluator shall supply a set of 128-bit plaintext values (as described below) and

obtain the ciphertext values that result from AES-CBC encryption of each plaintext

value using a key of each size and IV consisting of all zeros.

221 Plaintext value i shall have the leftmost i bits set to ones and the remaining bits set to

zeros, for values of i from 1 to 128. The plaintext values are listed in AESAVS,

Appendix D.

222 To test the decrypt functionality of AES-CBC, for each selected key size, use the

plaintext values from above as ciphertext input, and AES-CBC decrypt each

ciphertext value using key of each size consisting of all zeros and an IV of all zeros.

223

224 AES-CBC Multi-Block Message Test

225 The evaluator shall test the encrypt functionality by encrypting nine i-block messages

for each selected key size, for 2 ≤ i ≤ 10. For each test, the evaluator shall supply a

key, an IV, and a plaintext message of length i blocks, and encrypt the message using

AES-CBC. The resulting ciphertext values shall be compared to the results of

encrypting the plaintext messages using a known good implementation.

226 The evaluator shall test the decrypt functionality by decrypting nine i-block messages

for each selected key size, for 2 ≤ i ≤ 10. For each test, the evaluator shall supply a

key, an IV, and a ciphertext message of length i blocks, and decrypt the message

using AES-CBC. The resulting plaintext values shall be compared to the results of

decrypting the ciphertext messages using a known good implementation.

227 AES-CBC Monte Carlo Tests

228 The evaluator shall test the encrypt functionality for each selected key size using 100

3-tuples of pseudo-random values for plaintext, IVs, and keys.

229 The evaluator shall supply a single 3-tuple of pseudo-random values for each selected

key size. This 3-tuple of plaintext, IV, and key is provided as input to the below

algorithm to generate the remaining 99 3-tuples, and to run each 3-tuple through 1000

iterations of AES-CBC encryption.

230 # Input: PT, IV, Key

231 Key[0] = Key

232 IV[0] = IV

233 PT[0] = PT

234

235 for i = 1 to 100 {

236 Output Key[i], IV[i], PT[0]

237 for j = 1 to 1000 {

238 if j == 1 {

239 CT[1] = AES-CBC-Encrypt(Key[i], IV[i], PT[1])

240 PT[2] = IV[i]

241 } else {

242 CT[j] = AES-CBC-Encrypt(Key[i], PT[j])

243 PT[j+1] = CT[j-1]

244 }

245 }

246 Output CT[1000]

247

248 If KeySize == 128 { Key[i+1] = Key[i] xor CT[1000] }

249 If KeySize == 256 { Key[i+1] = Key[i] xor ((CT[999] << 128) |

CT[1000]) }

250

251 IV[i+1] = CT[1000]

252 PT[0] = CT[999]

253 }

254 The ciphertext computed in the 1000th iteration (CT[1000]) is the result for each of

the 100 3-tuples for each selected key size. This result shall be compared to the result

of running 1000 iterations with the same values using a known good implementation.

255 The evaluator shall test the decrypt functionality using the same test as above,

exchanging CT and PT, and replacing AES-CBC-Encrypt with AES-CBC-Decrypt.

256 AES-GCM Test

257 The evaluator shall test the authenticated encrypt functionality of AES-GCM for each

combination of the following input parameter lengths:

128 bit and 256 bit keys

Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer

multiple of 128 bits, if supported. The other plaintext length shall not be an

integer multiple of 128 bits, if supported.

Three AAD lengths. One AAD length shall be 0, if supported. One AAD length

shall be a non-zero integer multiple of 128 bits, if supported. One AAD length

shall not be an integer multiple of 128 bits, if supported.

Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV

lengths tested.

258 The evaluator shall test the encrypt functionality using a set of 10 key, plaintext,

AAD, and IV tuples for each combination of parameter lengths above and obtain the

ciphertext value and tag that results from AES-GCM authenticated encrypt. Each

supported tag length shall be tested at least once per set of 10. The IV value may be

supplied by the evaluator or the implementation being tested, as long as it is known.

259 The evaluator shall test the decrypt functionality using a set of 10 key, ciphertext, tag,

AAD, and IV 5-tuples for each combination of parameter lengths above and obtain a

Pass/Fail result on authentication and the decrypted plaintext if Pass. The set shall

include five tuples that Pass and five that Fail.

260 The results from each test may either be obtained by the evaluator directly or by

supplying the inputs to the implementer and receiving the results in response. To

determine correctness, the evaluator shall compare the resulting values to those

obtained by submitting the same inputs to a known good implementation.

261 XTS-AES Test

262 The evaluator shall test the encrypt functionality of XTS-AES for each combination

of the following input parameter lengths:

256 bit (for AES-128) and 512 bit (for AES-256) keys

Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall be a

non-zero integer multiple of 128 bits, if supported. One of the data unit lengths

shall be an integer multiple of 128 bits, if supported. The third data unit length

shall be either the longest supported data unit length or 216 bits, whichever is

smaller.

263 using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples and

obtain the ciphertext that results from XTS-AES encrypt.

264 The evaluator may supply a data unit sequence number instead of the tweak value if

the implementation supports it. The data unit sequence number is a base-10 number

ranging between 0 and 255 that implementations convert to a tweak value internally.

265 The evaluator shall test the decrypt functionality of XTS-AES using the same test as

for encrypt, replacing plaintext values with ciphertext values and XTS-AES encrypt

with XTS-AES decrypt.

4.1.2.7 FCS_COP.1(g) Cryptographic Operation (Key Encryption)

4.1.2.7.1 TSS

266 The evaluator shall verify the TSS includes a description of the key size used for

encryption and the mode used for the key encryption.

4.1.2.7.2 Operational Guidance

267 If multiple key encryption modes are supported, the evaluator examines the guidance

documentation to determine that the method of choosing a specific mode/key size by

the end user is described.

4.1.2.7.3 KMD

268 The evaluator shall examine the vendor’s KMD to verify that it includes a description

of how key encryption will be used as part of the key chain.

4.1.2.7.4 Test

269 The AES test should be followed in FCS_COP.1(f) Cryptographic Operation (AES

Data Encryption/Decryption.

4.1.3 Cryptographic Key Derivation (FCS_KDF)

4.1.3.1 FCS_KDF_EXT.1 Cryptographic Key Derivation

4.1.3.1.1 TSS

270 The evaluator shall verify the TSS includes a description of the key derivation

function and shall verify the key derivation uses an approved derivation mode and

key expansion algorithm according to SP 800-108 and SP 800-132.

4.1.3.1.2 Operational Guidance

271 There are no AGD evaluation activities for this SFR.

4.1.3.1.3 KMD

272 The evaluator shall examine the vendor’s KMD to ensure that all keys used are

derived using an approved method and a description of how and when the keys are

derived.

4.1.3.1.4 Test

273 There are no test evaluation activities for this SFR.

4.1.4 Cryptographic Password Construct and Conditioning (FCS_PCC)

4.1.4.1 FCS_PCC_EXT.1 Cryptographic Password Construct and Conditioning

4.1.4.1.1 TSS

274 The evaluator shall ensure the TSS describes the manner in which the TOE enforces

the construction of passwords, including the length, and requirements on characters

(number and type). The evaluator also verifies that the TSS provides a description of

how the password is conditioned and the evaluator ensures it satisfies the

requirement.

4.1.4.1.2 Operational Guidance

275 There are no AGD evaluation activities for this SFR.

4.1.4.1.3 KMD

276 The evaluator shall examine the KMD to ensure that the formation of the BEV and

intermediary keys is described and that the key sizes match that selected by the ST

author.

277 The evaluator shall check that the KMD describes the method by which the

password/passphrase is first encoded and then fed to the SHA algorithm. The settings

for the algorithm (padding, blocking, etc.) shall be described, and the evaluator shall

verify that these are supported by the selections in this component as well as the

selections concerning the hash function itself. The evaluator shall verify that the

KMD contains a description of how the output of the hash function is used to form

the submask that will be input into the function and is the same length as the BEV as

specified above.

4.1.4.1.4 Test

278 The evaluator shall also perform the following tests:

 Test 1: Ensure that the TOE supports passwords/passphrases of a minimum

length of 64 characters.

 Test 2: If the TOE supports a password/passphrase length up to a maximum

number of characters, n (which would be greater than 64), then ensure that

the TOE will not accept more than n characters.

 Test 3: Ensure that the TOE supports passwords consisting of all characters

assigned and supported by the ST author.

4.1.5 Random Bit Generation (FCS_RBG)

4.1.5.1 FCS_RBG_EXT.1 Random Bit Generation

4.1.5.1.1 TSS

279 For any RBG services provided by a third party, the evaluator shall ensure the TSS

includes a statement about the expected amount of entropy received from such a

source, and a full description of the processing of the output of the third-party source.

The evaluator shall verify that this statement is consistent with the selection made in

FCS_RBG_EXT.1.2 for the seeding of the DRBG. If the ST specifies more than one

DRBG, the evaluator shall examine the TSS to verify that it identifies the usage of

each DRBG mechanism.

4.1.5.1.2 Operational Guidance

280 The evaluator shall verify that the AGD guidance instructs the administrator how to

configure the TOE to use the selected DRBG mechanism(s), if necessary, and

provides information regarding how to instantiate/call the DRBG for RBG services

needed in this cPP.

4.1.5.1.3 KMD

281 There are no KMD evaluation activities for this SFR.

4.1.5.1.4 Test

282 The evaluator shall perform 15 trials for the RNG implementation. If the RNG is

configurable by the TOE, the evaluator shall perform 15 trials for each configuration.

The evaluator shall verify that the instructions in the operational guidance for

configuration of the RNG are valid.

283 If the RNG has prediction resistance enabled, each trial consists of (1) instantiate

DRBG, (2) generate the first block of random bits (3) generate a second block of

random bits (4) uninstantiate. The evaluator verifies that the second block of random

bits is the expected value. The evaluator shall generate eight input values for each

trial. The first is a count (0 – 14). The next three are entropy input, nonce, and

personalization string for the instantiate operation. The next two are additional input

and entropy input for the first call to generate. The final two are additional input and

entropy input for the second call to generate. These values are randomly generated.

“generate one block of random bits” means to generate random bits with number of

returned bits equal to the Output Block Length (as defined in NIST SP800-90A).

284 If the RNG does not have prediction resistance, each trial consists of (1) instantiate

DRBG, (2) generate the first block of random bits (3) reseed, (4) generate a second

block of random bits (5) uninstantiate. The evaluator verifies that the second block of

random bits is the expected value. The evaluator shall generate eight input values for

each trial. The first is a count (0 – 14). The next three are entropy input, nonce, and

personalization string for the instantiate operation. The fifth value is additional input

to the first call to generate. The sixth and seventh are additional input and entropy

input to the call to reseed. The final value is additional input to the second generate

call.

285 The following paragraphs contain more information on some of the input values to be

generated/selected by the evaluator.

Entropy input: the length of the entropy input value must equal the seed length.

Nonce: If a nonce is supported (CTR_DRBG with no Derivation Function does

not use a nonce), the nonce bit length is one-half the seed length.

Personalization string: The length of the personalization string must be <= seed

length. If the implementation only supports one personalization string length,

then the same length can be used for both values. If more than one string length is

support, the evaluator shall use personalization strings of two different lengths. If

the implementation does not use a personalization string, no value needs to be

supplied.

Additional input: the additional input bit lengths have the same defaults and

restrictions as the personalization string lengths.

4.1.6 Submask combining (FCS_SMC)

4.1.6.1 FCS_SMC_EXT.1 Submask Combining

4.1.6.1.1 TSS

286 If the submasks produced from the authorization factors are XORed together to form

the BEV or intermediate key, the TSS section shall identify how this is performed

(e.g., if there are ordering requirements, checks performed, etc.). The evaluator shall

also confirm that the TSS describes how the length of the output produced is at least

the same as that of the BEV.

4.1.6.1.2 Operational Guidance

287 There are no AGD evaluation activities for this SFR.

4.1.6.1.3 KMD

288 The evaluator shall review the KMD to ensure that an approved combination is used

and does not result in the weakening or exposure of key material.

4.1.6.1.4 Test

289 The evaluator shall perform the following test:

290 Test 1 [conditional]: If there is more than one authorization factor, ensure that failure

to supply a required authorization factor does not result in access to the encrypted

data.

4.1.7 Validation (FCS_VAL)

4.1.7.1 FCS_VAL_EXT.1 Validation

4.1.7.1.1 TSS

291 The evaluator shall examine the TSS to determine which authorization factors support

validation.

292 The evaluator shall examine the TSS to review a high-level description if multiple

submasks are used within the TOE, how the submasks are validated (e.g., each

submask validated before combining, once combined validation takes place).

4.1.7.1.2 Operational Guidance

293 [conditional] If the validation functionality is configurable, the evaluator shall

examine the operational guidance to ensure it describes how to configure the TOE to

ensure the limits regarding validation attempts can be established.

4.1.7.1.3 KMD

294 The evaluator shall examine the KMD to verify that it described the method the TOE

employs to limit the number of consecutively failed authorization attempts.

295 The evaluator shall examine the vendor’s KMD to ensure it describes how validation

is performed. The description of the validation process in the KMD provides detailed

information how the TOE validates the submasks. The KMD describes how the

process works, such that it does not expose any material that might compromise the

submask(s).

4.1.7.1.4 Test

296 The evaluator shall perform the following tests:

297 Test 1: The evaluator shall determine the limit on the average rate of the number of

consecutive failed authorization attempts. The evaluator will test the TOE by entering

that number of incorrect authorization factors in consecutive attempts to access the

protected data. If the limit mechanism includes any “lockout” period, the time period

tested should include at least one such period. Then the evaluator will verify that the

TOE behaves as described in the TSS.

298 Test 2: For each validated authorization factor, ensure that when the user provides an

incorrect authorization factor, the TOE prevents the BEV from being forwarded

outside the TOE (e.g., to the EE).

5 Evaluation Activities for SARs

299 The sections below specify Evaluation Activities for the Security Assurance

Requirements included in the related cPPs (see section Error! Reference source not

found.). The Evaluation Activities are an interpretation of the more general CEM

assurance requirements as they apply to the specific technology area of the TOE.

300 In cases where the requirements are not technology dependent, the evaluator is

expected to perform the CEM work units (e.g., ASE, ALC_CMC.1, ALC_CMS.1),

those activities are not repeated here, rather they are expressed as part of the cPP.

5.1 ASE: Security Target Evaluation

301 An evaluation activity is defined here for evaluation of Exact Conformance claims

against a cPP in a Security Target. Other aspects of ASE remain as defined in the

CEM.

5.1.1 Conformance Claims (ASE_CCL.1)

302 The table below indicates the actions to be taken for particular ASE_CCL.1 elements

in order to determine exact conformance with a cPP.

ASE_CCL.1 element Evaluator Action

ASE_CCL.1.8C The evaluator shall check that the statements of security

problem definition in the PP and ST are identical.

ASE_CCL.1.9C The evaluator shall check that the statements of security

objectives in the PP and ST are identical.

ASE_CCL.1.10C The evaluator shall check that the statements of security

requirements in the ST include all the mandatory SFRs in

the cPP, and all of the selection-based SFRs that are

entailed by selections made in other SFRs (including any

SFR iterations added in the ST). The evaluator shall check

that if any other SFRs are present in the ST (apart from

iterations of SFRs in the cPP) then these are taken only

from the list of optional SFRs specified in the cPP (the

cPP will not necessarily include optional SFRs, but may

do so). If optional SFRs from the cPP are included in the

ST then the evaluator shall check that any selection-based

SFRs entailed by the optional SFRs adopted are also

included in the ST.

5.2 Development (ADV)

5.2.1 Basic Functional Specification (ADV_FSP.1)

303 The EAs for this assurance component focus on understanding the interfaces

(e.g., application programing interfaces, command line interfaces, graphical

user interfaces, network interfaces) described in the AGD documentation, and

possibly identified in the TOE Summary Specification (TSS) in response to

the SFRs. Specific evaluator actions to be performed against this

documentation are identified (where relevant) for each SFR in Section 2

(Evaluation Activities for SFRs), and in EAs for AGD, ATE and AVA SARs

in other parts of Section 5.

304 The EAs presented in this section address the CEM work units ADV_FSP.1-1,

ADV_FSP.1-2, ADV_FSP.1-3, and ADV_FSP.1-5.

305 The EAs are reworded for clarity and interpret the CEM work units such that

they will result in more objective and repeatable actions by the evaluator. The

EAs in this SD are intended to ensure the evaluators are consistently

performing equivalent actions.

306 The documents to be examined for this assurance component in an evaluation

are therefore the Security Target, AGD documentation, and any required

supplementary information required by the cPP: no additional “functional

specification” documentation is necessary to satisfy the EAs. The interfaces

that need to be evaluated are also identified by reference to the EAs listed for

each SFR, and are expected to be identified in the context of the Security

Target, AGD documentation, and any required supplementary information

defined in the cPP rather than as a separate list specifically for the purposes of

CC evaluation. The direct identification of documentation requirements and

their assessment as part of the EAs for each SFR also means that the tracing

required in ADV_FSP.1.2D (work units ADV_FSP.1-4, ADV_FSP.1-6 and

ADV_FSP.1-7 is treated as implicit and no separate mapping information is

required for this element.

CEM ADV_FSP.1 Work Units Evaluation Activities

ADV_FSP.1-1 The evaluator shall

examine the functional

specification to determine that it

states the purpose of each SFR-

supporting and SFR-enforcing

TSFI.

5.2.1.1 Evaluation Activity: The evaluator

shall examine the interface documentation

to ensure it describes the purpose and

method of use for each TSFI that is

identified as being security relevant.

ADV_FSP.1-2 The evaluator shall

examine the functional

specification to determine that the

method of use for each SFR-

supporting and SFR-enforcing TSFI

is given.

5.2.1.1 Evaluation Activity: The evaluator

shall examine the interface documentation

to ensure it describes the purpose and

method of use for each TSFI that is

identified as being security relevant.

ADV_FSP.1-3 The evaluator shall

examine the presentation of the

TSFI to determine that it identifies

all parameters associated with each

SFR-enforcing and SFR supporting

TSFI.

5.2.1.2 Evaluation Activity: The evaluator

shall check the interface documentation to

ensure it identifies and describes the

parameters for each TSFI that is identified

as being security relevant.

ADV_FSP.1-4 The evaluator shall Paragraph 561 from the CEM: “In the case

examine the rationale provided by

the developer for the implicit

categorisation of interfaces as SFR-

non-interfering to determine that it

is accurate.

where the developer has provided adequate

documentation to perform the analysis

called for by the rest of the work units for

this component without explicitly

identifying SFR-enforcing and SFR-

supporting interfaces, this work unit should

be considered satisfied.”

Since the rest of the ADV_FSP.1 work

units will have been satisfied upon

completion of the EAs, it follows that this

work unit is satisfied as well.

ADV_FSP.1-5 The evaluator shall

check that the tracing links the

SFRs to the corresponding TSFIs.

5.2.1.3 Evaluation Activity: The evaluator

shall examine the interface documentation

to develop a mapping of the interfaces to

SFRs.

ADV_FSP.1-6 The evaluator shall

examine the functional

specification to determine that it is

a complete instantiation of the

SFRs.

EAs that are associated with the SFRs in

Section 2, and, if applicable, Sections 3

and Error! Reference source not found.,

are performed to ensure that all the SFRs

where the security functionality is

externally visible (i.e., at the TSFI) are

covered. Therefore, the intent of this work

unit is covered.

ADV_FSP.1-7 The evaluator shall

examine the functional

specification to determine that it is

an accurate instantiation of the

SFRs.

EAs that are associated with the SFRs in

Section 2, and, if applicable, Sections 3

and Error! Reference source not found.,

are performed to ensure that all the SFRs

where the security functionality is

externally visible (i.e., at the TSFI) are

addressed, and that the description of the

interfaces is accurate with respect to the

specification captured in the SFRs.

Therefore, the intent of this work unit is

covered.

Table 1: Mapping of ADV_FSP.1 CEM Work Units to Evaluation Activities

5.2.1.1 Evaluation Activity

307 The evaluator shall examine the interface documentation to ensure it describes

the purpose and method of use for each TSFI that is identified as being

security relevant.

308 In this context, TSFI are deemed security relevant if they are used by the

administrator to configure the TOE, or to perform other administrative

functions (e.g., audit review or performing updates). Additionally, those

interfaces that are identified in the ST, or guidance documentation, as adhering

to the security policies (as presented in the SFRs), are also considered security

relevant. The intent, is that these interfaces will be adequately tested, and

having an understanding of how these interfaces are used in the TOE is

necessary to ensure proper test coverage is applied.

309 The set of TSFI that are provided as evaluation evidence are contained in the

Administrative Guidance and User Guidance.

5.2.1.2 Evaluation Activity

310 The evaluator shall check the interface documentation to ensure it identifies

and describes the parameters for each TSFI that is identified as being security

relevant.

5.2.1.3 Evaluation Activity

311 The evaluator shall examine the interface documentation to develop a

mapping of the interfaces to SFRs.

312 The evaluator uses the provided documentation and first identifies, and then

examines a representative set of interfaces to perform the EAs presented in

Section 2 (Evaluation Activities for SFRs), including the EAs associated with

testing of the interfaces.

313 It should be noted that there may be some SFRs that do not have an interface

that is explicitly “mapped” to invoke the desired functionality. For example,

generating a random bit string, destroying a cryptographic key that is no

longer needed, or the TSF failing to a secure state, are capabilities that may be

specified in SFRs, but are not invoked by an interface.

314 However, if the evaluator is unable to perform some other required EA

because there is insufficient design and interface information, then the

evaluator is entitled to conclude that an adequate functional specification has

not been provided, and hence that the verdict for the ADV_FSP.1 assurance

component is a ‘fail’.

5.3 Guidance Documents (AGD)

315 It is not necessary for a TOE to provide separate documentation to meet the

individual requirements of AGD_OPE and AGD_PRE. Although the Evaluation

Activities in this section are described under the traditionally separate AGD families,

the mapping between real TOE documents and AGD_OPE and AGD_PRE

requirements may be many-to-many, as long as all requirements are met in

documentation that is delivered to administrators and users (as appropriate) as part of

the TOE.

5.3.1 Operational User Guidance (AGD_OPE.1)

316 Specific requirements and checks on the user guidance documentation are identified

(where relevant) in the individual Evaluation Activities for each SFR, and for some

other SARs (e.g. ALC_CMC.1).

317 Evaluation Activity:

318 The evaluator shall check the requirements below are met by the operational

guidance.

319 Operational guidance documentation shall be distributed to administrators and users

(as appropriate) as part of the TOE, so that there is a reasonable guarantee that

administrators and users are aware of the existence and role of the documentation in

establishing and maintaining the evaluated configuration.

320 Operational guidance must be provided for every Operational Environment that the

TOE supports as claimed in the Security Target and must adequately address all

platforms claimed for the TOE in the Security Target. This may be contained all in

one document.

321 The contents of the operational guidance will be verified by the Evaluation Activities

defined below and as appropriate for each individual SFR in section Error!

Reference source not found..

322 In addition to SFR-related Evaluation Activities, the following information is also

required.

 The operational guidance shall contain instructions for configuring any

cryptographic engine associated with the evaluated configuration of the TOE.

It shall provide a warning to the administrator that use of other cryptographic

engines was not evaluated nor tested during the CC evaluation of the TOE.

 The TOE will likely contain security functionality that does not fall under the

scope of evaluation under this cPP. The operational guidance shall make it

clear to an administrator which security functionality is covered by the

Evaluation Activities.

5.3.2 Preparative Procedures (AGD_PRE.1)

323 As for the operational guidance, specific requirements and checks on the preparative

procedures are identified (where relevant) in the individual Evaluation Activities for

each SFR.

324 Evaluation Activity:

325 The evaluator shall check the requirements below are met by the preparative

procedures.

326 The contents of the preparative procedures will be verified by the Evaluation

Activities defined below and as appropriate for each individual SFR in section Error!

Reference source not found..

327 Preparative procedures shall be distributed to administrators and users (as

appropriate) as part of the TOE, so that there is a reasonable guarantee that

administrators and users are aware of the existence and role of the documentation in

establishing and maintaining the evaluated configuration.

328 The contents of the preparative procedures will be verified by the Evaluation

Activities defined below and as appropriate for each individual SFR in section Error!

Reference source not found..

329 In addition to SFR-related Evaluation Activities, the following information is also

required.

330 Preparative procedures must include a description of how the administrator verifies

that the operational environment can fulfil its role to support the security functionality

(including the requirements of the Security Objectives for the Operational

Environment specified in the Security Target). The documentation should be in an

informal style and should be written with sufficient detail and explanation that they

can be understood and used by the target audience (which will typically include IT

staff who have general IT experience but not necessarily experience with the TOE

itself).

331 Preparative procedures must be provided for every Operational Environment that the

TOE supports as claimed in the Security Target and must adequately address all

platforms claimed for the TOE in the Security Target. This may be contained all in

one document.

332 The preparative procedures must include

 instructions to successfully install the TSF in each Operational Environment;

and

 instructions to manage the security of the TSF as a product and as a

component of the larger operational environment; and

 instructions to provide a protected administrative capability.

5.4 Tests (ATE)

5.4.1 Independent Testing – Conformance (ATE_IND.1)

333 Testing is performed to confirm the functionality described in the TSS as well as the

operational guidance documentation. The focus of the testing is to confirm that the

requirements specified in the SFRs are being met.

334 The evaluator should consult Appendix B FDE Equivalency Considerations

when determining the appropriate strategy for testing multiple variations or models of

the TOE that may be under evaluation.

335 The SFR-related Evaluation Activities in the SD identify the specific testing activities

necessary to verify compliance with the SFRs. The tests identified in these other

Evaluation Activities constitute a sufficient set of tests for the purposes of meeting

ATE_IND.1.2E. It is important to note that while the Evaluation Activities identify

the testing that is necessary to be performed, the evaluator is responsible for ensuring

that the interfaces are adequately tested for the security functionality specified for

each SFR.

336 Evaluation Activity:

337 The evaluator shall examine the TOE to determine that the test configuration is

consistent with the configuration under evaluation as specified in the ST.

338 Evaluation Activity:

339 The evaluator shall examine the TOE to determine that it has been installed

properly and is in a known state.

340 Evaluation Activity:

341 The evaluator shall prepare a test plan that covers all of the testing actions for

ATE_IND.1 in the CEM and in the SFR-related Evaluation Activities. While it is not

necessary to have one test case per test listed in an Evaluation Activity, the evaluator

must show in the test plan that each applicable testing requirement in the SFR-related

Evaluation Activities is covered.

342 The test plan identifies the platforms to be tested, and for any platforms not included

in the test plan but included in the ST, the test plan provides a justification for not

testing the platforms. This justification must address the differences between the

tested platforms and the untested platforms, and make an argument that the

differences do not affect the testing to be performed. It is not sufficient to merely

assert that the differences have no affect; rationale must be provided. If all platforms

claimed in the ST are tested, then no rationale is necessary.

343 The test plan describes the composition and configuration of each platform to be

tested, and any setup actions that are necessary beyond what is contained in the AGD

documentation. It should be noted that the evaluator is expected to follow the AGD

documentation for installation and setup of each platform either as part of a test or as

a standard pre-test condition. This may include special test drivers or tools. For each

driver or tool, an argument (not just an assertion) should be provided that the driver or

tool will not adversely affect the performance of the functionality by the TOE and its

platform. This also includes the configuration of any cryptographic engine to be used

(e.g. for cryptographic protocols being evaluated).

344 The test plan identifies high-level test objectives as well as the test procedures to be

followed to achieve those objectives, and the expected results.

345 The test report (which could just be an updated version of the test plan) details the

activities that took place when the test procedures were executed, and includes the

actual results of the tests. This shall be a cumulative account, so if there was a test run

that resulted in a failure, so that a fix was then installed and then a successful re-run

of the test was carried out, then the report would show a “fail” result followed by a

“pass” result (and the supporting details), and not just the “pass” result1.

5.5 Vulnerability Assessment (AVA)

5.5.1 Vulnerability Survey (AVA_VAN.1)

346 While vulnerability analysis is inherently a subjective activity, a minimum

level of analysis can be defined and some measure of objectivity and

repeatability (or at least comparability) can be imposed on the vulnerability

1 It is not necessary to capture failures that were due to errors on the part of the tester or test environment. The

intention here is to make absolutely clear when a planned test resulted in a change being required to the

originally specified test configuration in the test plan, to the evaluated configuration identified in the ST and

operational guidance, or to the TOE itself.

analysis process. In order to achieve such objectivity and repeatability it is

important that the evaluator follows a set of well-defined activities, and

documents their findings so others can follow their arguments and come to the

same conclusions as the evaluator. While this does not guarantee that different

evaluation facilities will identify exactly the same type of vulnerabilities or

come to exactly the same conclusions, the approach defines the minimum

level of analysis and the scope of that analysis, and provides Certification

Bodies a measure of assurance that the minimum level of analysis is being

performed by the evaluation facilities.

347 In order to meet these goals some refinement of the AVA_VAN.1 CEM work

units is needed. The following table indicates, for each work unit in

AVA_VAN.1, whether the CEM work unit is to be performed as written, or if

it has been clarified by an Evaluation Activity. If clarification has been

provided, a reference to this clarification is provided in the table.

348

CEM AVA_VAN.1

Work Units
Evaluation Activities

AVA_VAN.1-1 The evaluator shall

examine the TOE to determine that

the test configuration is consistent

with the configuration under

evaluation as specified in the ST.

The evaluator shall perform the CEM

activity as specified.

If the iTC specifies any tools to be used in

performing this analysis in section A.3.4,

the following text is also included in this

cell: “The calibration of test resources

specified in paragraph 1418 of the CEM

applies to the tools listed in Appendix A,

Section A.1.4.”

AVA_VAN.1-2 The evaluator shall

examine the TOE to determine that

it has been installed properly and is

in a known state

The evaluator shall perform the CEM

activity as specified.

AVA_VAN.1-3 The evaluator shall

examine sources of information

publicly available to identify

potential vulnerabilities in the TOE.

Replace CEM work unit with activities

outlined in Appendix A, Section A.1

AVA_VAN.1-4 The evaluator shall

record in the ETR the identified

potential vulnerabilities that are

candidates for testing and

applicable to the TOE in its

operational environment.

Replace the CEM work unit with the

analysis activities on the list of potential

vulnerabilities in Appendix A, section A.1,

and documentation as specified in

Appendix A, Section A.3.

AVA_VAN.1-5 The evaluator shall

devise penetration tests, based on Replace the CEM work unit with the

the independent search for potential

vulnerabilities.

activities specified in Appendix A, section

A.2.

AVA_VAN.1-6 The evaluator shall

produce penetration test

documentation for the tests based

on the list of potential

vulnerabilities in sufficient detail to

enable the tests to be repeatable.

The test documentation shall

include:

a) identification of the potential

vulnerability the TOE is being

tested for;

b) instructions to connect and setup

all required test equipment as

required to conduct the penetration

test;

c) instructions to establish all

penetration test prerequisite initial

conditions;

d) instructions to stimulate the TSF;

e) instructions for observing the

behaviour of the TSF;

f) descriptions of all expected

results and the necessary analysis to

be performed on the observed

behaviour for comparison against

expected results;

g) instructions to conclude the test

and establish the necessary post-test

state for the TOE.

The CEM work unit is captured in

Appendix A, Section A.3; there are no

substantive differences.

AVA_VAN.1-7 The evaluator shall

conduct penetration testing.

The evaluator shall perform the CEM

activity as specified. See Appendix A,

Section A.3, paragraph Error! Reference

source not found. for guidance related to

attack potential for confirmed flaws.

AVA_VAN.1-8 The evaluator shall

record the actual results of the

penetration tests.

The evaluator shall perform the CEM

activity as specified.

AVA_VAN.1-9 The evaluator shall

report in the ETR the evaluator

penetration testing effort, outlining

the testing approach, configuration,

depth and results.

Replace the CEM work unit with the

reporting called for in Appendix A, Section

A.3.

AVA_VAN.1-10 The evaluator

shall examine the results of all

penetration testing to determine that

the TOE, in its operational

environment, is resistant to an

attacker possessing a Basic attack

potential.

This work unit is not applicable for Type 1

and Type 2 flaws (as defined in Appendix

A, Section A.1), as inclusion in this

Supporting Document by the iTC makes

any confirmed vulnerabilities stemming

from these flaws subject to an attacker

possessing a Basic attack potential. This

work unit is replaced for Type 3 and Type

4 flaws by the activities defined in

Appendix A, Section A.3, paragraph

Error! Reference source not found..

AVA_VAN.1-11 The evaluator

shall report in the ETR all

exploitable vulnerabilities and

residual vulnerabilities, detailing

for each:

a) its source (e.g. CEM activity

being undertaken when it was

conceived, known to the evaluator,

read in a publication);

b) the SFR(s) not met;

c) a description;

d) whether it is exploitable in its

operational environment or not (i.e.

exploitable or residual).

e) the amount of time, level of

expertise, level of knowledge of the

TOE, level of opportunity and the

equipment required to perform the

identified vulnerabilities, and the

corresponding values using the

tables 3 and 4 of Annex B.4.

Replace the CEM work unit with the

reporting called for in Appendix A, Section

A.3.

349 Table 2. Mapping of AVA_VAN.1 CEM Work Units to Evaluation

Activities

350 Because of the level of detail required for the evaluation activities, the bulk of

the instructions are contained in Appendix A, while an “outline” of the

assurance activity is provided below.

5.5.1.1 Evaluation Activity (Documentation):

351 The developer shall provide documentation identifying the list of software and

hardware components that compose the TOE. Hardware components apply to

all systems claimed in the ST, and should identify at a minimum the

processors used by the TOE. Software components include any libraries used

by the TOE, such as cryptographic libraries. This additional documentation is

merely a list of the name and version number of the components, and will be

used by the evaluators in formulating hypotheses during their analysis.

352 The evaluator shall examine the documentation outlined below provided by

the vendor to confirm that it contains all required information. This

documentation is in addition to the documentation already required to be

supplied in response to the EAs listed previously.

353 In addition to the activities specified by the CEM in accordance with Table 2

above, the evaluator shall perform the following activities.

5.5.1.2 Evaluation Activity

354 The evaluator formulates hypotheses in accordance with process defined in

Appendix A.1. The evaluator documents the flaw hypotheses generated for the

TOE in the report in accordance with the guidelines in Appendix A.3. The

evaluator shall perform vulnerability analysis in accordance with Appendix

A.2. The results of the analysis shall be documented in the report according to

Appendix A.3.

6 Required Supplementary Information

355 This Supporting Document refers in various places to the possibility that

‘supplementary information’ may need to be supplied as part of the deliverables for

an evaluation. This term is intended to describe information that is not necessarily

included in the Security Target or operational guidance, and that may not necessarily

be public. Examples of such information could be entropy analysis, or description of

a cryptographic key management architecture used in (or in support of) the TOE. The

requirement for any such supplementary information will be identified in the relevant

cPP.

356 The FDE cPP for the Authorization Acquisition requires an entropy analysis, and key

management description. The EAs the evaluator is to perform with those documents

are captured under the appropriate SFRs in section 2.

7 References

[CC1] Common Criteria for Information Technology Security

Evaluation, Part 1: Introduction and General Model

CCMB-2012-09-001, Version 3.1 Revision 4, September

2012

[CC2] Common Criteria for Information Technology Security

Evaluation,

Part 2: Security Functional Components,

CCMB-2012-09-002, Version 3.1 Revision 4, September

2012

[CC3] Common Criteria for Information Technology Security

Evaluation,

Part 3: Security Assurance Components,

CCMB-2012-09-003, Version 3.1 Revision 4, September

2012

[CEM] Common Methodology for Information Technology Security

Evaluation, CCMB-2012-09-004, Version 3.1 Revision 4,

September 2012

[FDE–AA] collaborative Protection Profile for Full Disk Encryption –

Authorization Acquisition , Version 2.0, 22 September 2016

Appendixes

A. Vulnerability Analysis

A.1 Sources of vulnerability information

357 CEM Work Unit AVA_VAN.1-3 has been supplemented in this Supporting

Document to provide a better-defined set of flaws to investigate and

procedures to follow based on this particular technology. Terminology used is

based on the flaw hypothesis methodology, where the evaluation team

hypothesizes flaws and then either proves or disproves those flaws (a flaw is

equivalent to a “potential vulnerability” as used in the CEM). Flaws are

categorized into four “types” depending on how they are formulated:

1. A list of flaw hypotheses applicable to the technology described by the

cPP derived from public sources as documented in Section A.1.1—this

fixed set has been agreed to by the iTC. Additionally, this will be

supplemented with entries for a set of public sources (as indicated below)

that are directly applicable to the TOE or its identified components (as

defined by the process in Section A.1.1 below); this is to ensure that the

evaluators include in their assessment applicable entries that have been

discovered since the cPP was published;

2. A list of flaw hypotheses contained in this document that are derived from

lessons learned specific to that technology and other iTC input (that might

be derived from other open sources and vulnerability databases, for

example) as documented in Section A.1.2;

3. A list of flaw hypotheses derived from information available to the

evaluators; this includes the baseline evidence provided by the vendor

described in this Supporting Document (documentation associated with

EAs, documentation described in Section 3.5.1.1), as well as other

information (public and/or based on evaluator experience) as documented

in Section A.1.3; and

4. A list of flaw hypotheses that are generated through the use of iTC-defined

tools (e.g., nmap, protocol testers) and their application is specified in

section A.1.4.

A.1.1 Type 1 Hypotheses—Public-Vulnerability-based

358 The following list of public sources of vulnerability information was selected

by the iTC:

a. Search Common Vulnerabilities and Exposures: http://cve.mitre.org/cve/
b. Search the National Vulnerability Database: https://nvd.nist.gov/

c. Search US-CERT http://www.kb.cert.org/vuls/html/search

359 The list of sources above was searched with the following search terms:

o General (for all)

 Product name

http://cve.mitre.org/cve/

 underlying components (e.g., OS, software libraries (crypto

libraries), chipsets)

 drive encryption, disk encryption

 key destruction/sanitization

o AA:

 Underlying components (e.g., smart card libraries)

 Opal management software, SED management software

 Password caching

o For Software FDE (AA or EE):

 Key caching

360 In order to successfully complete this activity, the evaluator will use the

developer provided list of all of 3rd party library information that is used as

part of their product, along with the version and any other identifying

information (this is required in the cPP as part of the ASE_TSS.1.1C

requirement). This applies to hardware (including chipsets, etc.) that a vendor

utilizes as part of their TOE. This TOE-unique information will be used in the

search terms the evaluator uses in addition to those listed above.

361 The evaluator will also consider the requirements that are chosen and the

appropriate guidance that is tied to each requirement. For example, with

FCS_AFA_EXT.1, if the Smartcard option is chosen, then the evaluator will

use the appropriate search terms for smart cards.

362 In order to supplement this list, the evaluators shall also perform a search on

the sources listed above to determine a list of potential flaw hypotheses that

are more recent that the publication date of the cPP, and those that are specific

to the TOE and its components as specified by the additional documentation

mentioned above. Any duplicates – either in a specific entry, or in the flaw

hypothesis that is generated from an entry from the same or a different source

– can be noted and removed from consideration by the evaluation team.

363 As part of type 1 flaw hypothesis generation for the specific components of

the TOE, the evaluator shall also search the component manufacturer’s

websites to determine if flaw hypotheses can be generated on this basis (for

instance, if security patches have been released for the version of the

component being evaluated, the subject of those patches may form the basis

for a flaw hypothesis).

A.1.2 Type 2 Hypotheses—iTC-Sourced

364 The following list of flaw hypothesis generated by the iTC for this technology

must be considered by the evaluation team as flaw hypotheses in performing

the vulnerability assessment:

365 General:

366 AA:

 In order to validate the AA is properly encrypting keying material (e.g.,

BEV, KEK, authorization submasks) in the readable part of the disk (e.g.,

shadow MBR), the evaluator should examine the disk using a tool to view

the drive (e.g. WinHex) to look for material that exposes a key value.

 When an authentication or recovery credential is changed, it is critical that

the AA does not leave old keys/key chains/key material around. This

process should also be monitored using a tool to view the drive.

367 AA (for ISV’s)

 It is possible that preboot authentication appears to function normally and

it’s possible that the SED could neglect to lock the global range, which

results in the preboot being locked, but the rest of the drive is unencrypted.

This could be tested using a tool (e.g. WinHex) by writing a known

pattern, locking the drive and looking for the pattern.

368 If the evaluators discover a Type 3 or Type 4 flaw that they believe should be

considered as a Type 2 flaw in future versions of this cPP, they should work

with their Certification Body to determine the appropriate means of submitting

the flaw for consideration by the iTC.

A.1.3 Type 3 Hypotheses—Evaluation-Team-Generated

369 The iTC has leveraged the expertise of the developers and the evaluation labs

to diligently develop the appropriate search terms and vulnerability databases.

They have also thoughtfully considered the iTC-sourced hypotheses the

evaluators should use based upon the applicable use case and the threats to be

mitigated by the SFRs. Therefore, it is the intent of the iTC, for the evaluation

to focus all effort on the Type 1 and Type 2 Hypotheses and has decided that

Type 3 Hypotheses are not necessary.

370 However, if the evaluators discover a Type 3 potential flaw that they believe

should be considered, they should work with their Certification Body to

determine the feasibility of pursuing the hypothesis. The Certification Body

may determine whether the potential flaw hypotheses is worth submitting to

the iTC for consideration as Type 2 hypotheses in future drafts of the cPP/SD.

A.1.4 Type 4 Hypotheses—Tool-Generated

371 The iTC has called out several tools that should be used during the Type 2

hypotheses process. Therefore, the use of any tools is covered within the Type

2 construct and the iTC does not see any additional tools that are necessary.

The use case for Version 2 of the cPP is rather straightforward – the device is

found in a powered down state and has not been subjected to revisit/evil maid

attacks. Since that is the use case, the iTC has also assumed there is a trusted

channel between the AA and EE. Since the use case is so narrow, and is not a

typical model for penetration or fuzzing testing, the normal types of testing do

not apply. Therefore, the relevant types of tools are referenced in Type 2.

A.2 Process for Evaluator Vulnerability Analysis

372 As flaw hypotheses are generated from the activities described above, the

evaluation team will disposition them; that is, attempt to prove, disprove, or

determine the non-applicability of the hypotheses. This process is as follows.

373 The evaluator will refine each flaw hypothesis for the TOE and attempt to

disprove it using the information provided by the developer or through

penetration testing. During this process, the evaluator is free to interact

directly with the developer to determine if the flaw exists, including requests

to the developer for additional evidence (e.g., detailed design information,

consultation with engineering staff); however, the CB should be included in

these discussions. Should the developer object to the information being

requested as being not compatible with the overall level of the evaluation

activity/cPP and cannot provide evidence otherwise that the flaw is disproved,

the evaluator prepares an appropriate set of materials as follows:

 the source documents used in formulating the hypothesis, and why it

represents a potential compromise against a specific TOE function;

 an argument why the flaw hypothesis could not be proven or disproved

by the evidence provided so far; and

 the type of information required to investigate the flaw hypothesis

further.

374 The Certification Body (CB) will then either approve or disapprove the

request for additional information. If approved, the developer provides the

requested evidence to disprove the flaw hypothesis (or, of course,

acknowledge the flaw).

375 For each hypothesis, the evaluator will note whether the flaw hypothesis has

been successfully disproved, successfully proven to have identified a flaw, or

requires further investigation. It is important to have the results documented as

outlined in Section A.3 below.

376 If the evaluator finds a flaw, the evaluator must report these flaws to the

developer. All reported flaws must be addressed as follows:

377 If the developer confirms that the flaw exists and that it is exploitable at Basic

Attack Potential, then a change is made by the developer, and the resulting

resolution is agreed by the evaluator and noted as part of the evaluation report.

378 If the developer, the evaluator, and the CB agree that the flaw is exploitable

only above Basic Attack Potential and does not require resolution for any

other reason, then no change is made and the flaw is noted as a residual

vulnerability in the CB-internal report (ETR).

379 If the developer and evaluator agree that the flaw is exploitable only above

Basic Attack Potential, but it is deemed critical to fix because of technology-

specific or cPP-specific aspects such as typical use cases or operational

environments, then a change is made by the developer, and the resulting

resolution is agreed by the evaluator and noted as part of the evaluation report.

380 Disagreements between evaluator and vendor regarding questions of the

existence of a flaw, its attack potential, or whether it should be deemed critical

to fix are resolved by the CB.

381 Any testing performed by the evaluator shall be documented in the test report

as outlined in Section A.3 below.

382 As indicated in Section A.3, Reporting, the public statement with respect to

vulnerability analysis that is performed on TOEs conformant to the cPP is

constrained to coverage of flaws associated with Types 1 and 2 (defined in

Section A.1) flaw hypotheses only. The fact that the iTC generates these

candidate hypotheses indicates these must be addressed.

A.3 Reporting

383 The evaluators shall produce two reports on the testing effort; one that is

public-facing (that is, included in the non-proprietary evaluation report, which

is a subset of the Evaluation Technical Report (ETR)), and the complete ETR

that is delivered to the overseeing CB.

384 The public-facing report contains:

385 * The flaw identifiers returned when the procedures for searching public

sources were followed according to instructions in the Supporting Document

per Section A.1.1;

386 * A statement that the evaluators have examined the Type 1 flaw hypotheses

specified in this Supporting Document in section A.1.1 (i.e. the flaws listed in

the previous bullet) and the Type 2 flaw hypotheses specified in this

Supporting Document by the iTC in Section A.1.2.

387 No other information is provided in the public-facing report.

388 The internal CB report contains, in addition to the information in the public-

facing report:

 a list of all of the flaw hypotheses generated (cf. AVA_VAN.1-4);

 the evaluator penetration testing effort, outlining the testing approach,

configuration, depth and results (cf. AVA_VAN.1-9);

 all documentation used to generate the flaw hypotheses (in identifying

the documentation used in coming up with the flaw hypotheses, the

evaluation team must characterize the documentation so that a reader can

determine whether it is strictly required by this Supporting Document,

and the nature of the documentation (design information, developer

engineering notebooks, etc.));

 the evaluator shall report all exploitable vulnerabilities and residual

vulnerabilities, detailing for each:

a) its source (e.g. CEM activity being undertaken when it was

conceived, known to the evaluator, read in a publication);

b) the SFR(s) not met;

c) a description;

d) whether it is exploitable in its operational environment or not

(i.e. exploitable or residual).

e) the amount of time, level of expertise, level of knowledge of

the TOE, level of opportunity and the equipment required to

perform the identified vulnerabilities (cf. AVA_VAN.1-11);

f) how each flaw hypothesis was resolved (this includes whether the

original flaw hypothesis was confirmed or disproved, and any analysis

relating to whether a residual vulnerability is exploitable by an attacker

with Basic Attack Potential) (cf. AVA_VAN1-10); and

g) in the case that actual testing was performed in the investigation (either

as part of flaw hypothesis generation using tools specified by the iTC in

Section A.1.4, or in proving/disproving a particular flaw) the steps

followed in setting up the TOE (and any required test equipment);

executing the test; post-test procedures; and the actual results (to a level

of detail that allow repetition of the test, including the following:

 identification of the potential vulnerability the TOE is being

tested for;

 instructions to connect and setup all required test equipment as

required to conduct the penetration test;

 instructions to establish all penetration test prerequisite initial

conditions;

 instructions to stimulate the TSF;

 instructions for observing the behaviour of the TSF;

 descriptions of all expected results and the necessary analysis

to be performed on the observed behaviour for comparison

against expected results;

 instructions to conclude the test and establish the necessary

post-test state for the TOE. (cf. AVA_VAN.1-6, AVA_VAN.1-

8).

B. FDE Equivalency Considerations

389 Introduction

390 This appendix provides a foundation for evaluators to determine whether a vendor’s

request for equivalency of products for different OSs/platforms wishing to claim

conformance to the FDE collaborative Protection Profiles.

391 For the purpose of this evaluation, equivalency can be broken into two categories:

 Variations in models: Separate TOE models/variations may include

differences that could necessitate separate testing across each model. If there

are no variations in any of the categories listed below, the models may be

considered equivalent.

 Variations in OS/platform the product is tested (e.g., the testing

environment): The method a TOE provides functionality (or the

functionality itself) may vary depending upon the OS on which it is installed.

If there are no difference in the TOE provided functionality or in the manner

in which the TOE provides the functionality, the models may be considered

equivalent.

392 Determination of equivalency for each of the above specified categories can result in

several different testing outcomes.

393 If a set of TOE are determined to be equivalent, testing may be performed on a single

variation of the TOE. However, if the TOE variations have security relevant

functional differences, each of the TOE models that exhibits either functional or

structural differences must be separately tested. Generally speaking, only the

difference between each variation of TOE must be separately tested. Other equivalent

functionality, may be tested on a representative model and not across multiple

platforms.

394 If it is determined that a TOE operates the same regardless of the platform/OS it is

installed within, testing may be performed on a single OS/platform combination for

all equivalent configurations. However, if the TOE is determined to provide

environment specific functionality, testing must take place in each environment for

which a difference in functionality exists. Similar to the above scenario, only the

functionality affected by environment differences must be retested.

395 If a vendor disagrees with the evaluator’s assessment of equivalency, the validator

arbitrates between the two parties whether equivalency exists.

396 Evaluator guidance for determining equivalence

397 The following table provides a description of how an evaluator should consider each

of the factors that affect equivalency between TOE model variations and across

operating environments. Additionally, the table also identifies scenarios that will

result in additional separate testing across models/platforms.

Factor Same/Not

Same

Evaluator Guidance

Platform/Hardware

Dependencies

Independent If there are no identified platform/hardware dependencies,

the evaluator shall consider testing on multiple hardware

platforms to be equivalent.

Dependencies If there are specified differences between

platforms/hardware, the evaluator must identify if

the differences affect the cPP specified security

functionality or if they apply to non-PP specified

functionality. If functionality specified in the cPP is

dependent upon platform/hardware provided

services, the TOE must be tested on each of the

different platform to be considered validated on that

particular hardware combination. In these cases, the

evaluator has the option of only re-testing the

functionality dependent upon the platform/hardware

provided functionality. If the differences only affect

non-PP specified functionality, the variations may

still be considered equivalent. For each difference

the evaluator must provide an explanation of why

the difference does or does not affect cPP specified

functionality.

Software/OS

Dependencies

Independent If there are no identified software/OS dependencies, the

evaluator shall consider testing on multiple OSs to be

equivalent.

Dependencies If there are specified differences between OSs, the evaluator

must identify if the differences affect the cPP specified

security functionality or if they apply to non-PP specified

functionality. If functionality specified in the cPP is

dependent upon OS provided services, the TOE must be

tested on each of the different OSs. In these cases, the

evaluator has the option of only re-testing the functionality

dependent upon the OS provided functionality. If the

differences only affect non-PP specified functionality, the

model variations may still be considered equivalent. For

each difference the evaluator must provide an explanation of

why the difference does or does not affect cPP specified

functionality.

Differences in TOE

Software Binaries

Identical If the model binaries are identical, the model variations shall

be considered equivalent.

Different If there are differences between model software binaries, a

determination must be made if the differences affect cPP-

specified security functionality. If cPP-specified

functionality is affected, the models are not considered

equivalent and must be tested separately. The evaluator has

the option of only retesting the functionality that was

affected by the software differences. If the differences only

affect non-PP specified functionality, the models may still be

considered equivalent. For each difference the evaluator

must provide an explanation of why the difference does or

Factor Same/Not

Same

Evaluator Guidance

does not affect cPP specified functionality.

Different in

Libraries Used to

Provide TOE

Functionality

Same If there are no differences between the libraries used in

various TOE models, the model variations shall be

considered equivalent.

Different If the separate libraries are used between model variations, a

determination if the functionality provided by the library

affects cPP-specified functionality must be made. If cPP-

specified functionality is affected, the models are not

considered equivalent and must be tested separately. The

evaluator has the option of only retesting the functionality

that was affected by the differences in the included libraries.

If the different libraries only affect non-PP specified

functionality, the models may still be considered equivalent.

For each different library, the evaluator must provide an

explanation of why the different libraries do or do not affect

cPP specified functionality.

TOE Management

Interface

Differences

Consistent If there are no differences in the management interfaces

between various TOE models, the models variations shall be

considered equivalent.

Differences If the TOE provides separate interfaces based on either the

OS it is installed on or the model variation, a determination

must be made if cPP-specified functionality can be

configured by the different interfaces. If the interface

differences affect cPP-specified functionality, the

variations/OS installations are not considered equivalent and

must be separately tested. The evaluator has the option of

only retesting the functionality that can be configured by the

different interfaces (and the configuration of said

functionality). If the different management interfaces only

affect non-PP specified functionality, the models may still be

considered equivalent. For each management interface

difference, the evaluator must provide an explanation of why

the different management interfaces do or do not affect cPP

specified functionality.

TOE Functional

Differences

Identical If the functionality provided by different TOE model

variation is identical, the models variations shall be

considered equivalent.

Different If the functionality provided by different TOE model

variations differ, a determination must be made if the

functional differences affect cPP-specified functionality. If

cPP-specific functionality differs between models, the

models are not considered equivalent and must be tested

separately. In these cases, the evaluator has the option of

only retesting the functionality that differs model-to-model.

If the functional differences only affect non-cPP specified

functionality, the model variations may still be considered

equivalent. For each difference the evaluator must provide

an explanation of why the difference does or does not affect

Factor Same/Not

Same

Evaluator Guidance

cPP specified functionality.

398 Strategy

399 When performing the equivalency analysis, the evaluator should consider each factor

independently. Each analysis of an individual factor will result in one of two

outcomes,

 For the particular factor, all variations of the TOE on all supported platforms

are equivalent. In this case, testing may be performed on a single model in a

single test environment and cover all supported models and environments.

 For the particular factor, a subset of the TOE has been identified to require

separate testing to ensure that it operates identically to all other equivalent

TOE. The analysis would identify the specific combinations of models/testing

environments that needed to be tested.

400 Complete CC testing of the TOE would encompass the totality of each individual

analysis performed for each of the identified factors.

401 Test presentation/Truth in advertising

402 In addition to determining what to test, the evaluation results and resulting validation

report, must identify the actual module and testing environment combinations that

have been tested. The analysis used to determine the testing subset may be considered

proprietary and will only optionally be publically included.

