Korean National Protection Profile for Database Encryption V3.1

2025. 6. 27.

The certified Protection Profile is written in Korean. This document is a translation of the original from Korean into English.

Foreword

This Protection Profile has been developed with the support of National Security Research Institute (NSR) under the agreement between National Intelligence Service (NIS) and Ministry of Science and ICT (MSIT). The Protection Profile author converted Part 2, Common Security Requirements of 'Security Requirements for Government V3.0 for the Information Security Systems and Network Devices' and Security Requirements described in 'Database Encryption Product Testing Criteria(2024-01-15)' in conformity with the Common Criteria. The accurate interpretation of the requirements was made through the advice of the National Cyber Security Center of the National Intelligence Service. The Protection Profile includes application notes which give the additional interpretation and guidance for the evaluation and certification based on the Common Criteria, and the separated guidance supporting document (Korean only) for the Protection Profile is provided.

Revision History

Version	Date	Content
3.0	2022. 10. 14	o Korean National Protection Profile for Database Encryption V3.0 First Issue
3.1	2025. 6. 27.	o CC:2022 R1 based transition o Others: Reflection of the latest testing criteria, reinforcement of content, correction of editing errors, etc

Table of Contents

1.2. TOE overview 1.2.1. Database Encryption overview 1.2.2. TOE type and scope 1.2.3. TOE usage and major security features 1.2.4. Non-TOE and TOE operational environment 1.3. Conventions 1.4. Terms and definitions 1.5. PP organization 1.7. CC conformance claim 2.1. CC conformance claim 2.2. PP conformance claim 2.3. Package conformance claim 2.4. Conformance claim rationale 2.5. PP conformance statement 1.6. Security problem definition 1.7. Assets 1.8. Assets 1.9. 3.1. Unauthorized access 1.9. 3.2. Information leak 1.9. 3.2. Information leak 1.9. 3.3. Organizational security policy 1.9. 4. Assumptions 1.9. 4. Assump	1. PP introduction	1
1.2.1. Database Encryption overview 1.2.2. TOE type and scope 1.2.3. TOE usage and major security features 1.2.4. Non-TOE and TOE operational environment 1.3. Conventions 1.4. Terms and definitions 1.5. PP organization 1.7. CC conformance claim 2.1. CC conformance claim 2.2. PP conformance claim 2.3. Package conformance claim 2.4. Conformance claim rationale 2.5. PP conformance statement 1.6. Security problem definition 1.7. Assets 1.8. 3.2. Threats 1.9. 3.2.1. Unauthorized access 1.9. 3.2.1. Unauthorized access 1.9. 3.2.2. Information leak 1.9. 3.2.3. TOE functionality compromise 1.9. 3.3. Organizational security policy 1.9. 3.4. Assumptions 1.9. 3.5. 3.9. 3.9. 3.9. 3.9. 3.9. 3.9. 3	1.1. PP reference	1
1.2.2. TOE type and scope 1.2.3. TOE usage and major security features 1.2.4. Non-TOE and TOE operational environment 1.3. Conventions 1.4. Terms and definitions 1.5. PP organization 1. CC conformance claim 2.1. CC conformance claim 2.2. PP conformance claim 2.3. Package conformance claim 2.4. Conformance claim rationale 2.5. PP conformance statement 1. Security problem definition 3.1. Assets 3.2. Threats 3.2.1. Unauthorized access 3.2.2. Information leak 3.2.3. TOE functionality compromise 3.3. Organizational security policy 3.4. Assumptions	1.2. TOE overview	1
1.2.3. TOE usage and major security features 1.2.4. Non-TOE and TOE operational environment 1.3. Conventions 1.4. Terms and definitions 1.5. PP organization 1.7. CC conformance claim 2.1. CC conformance claim 2.2. PP conformance claim 2.3. Package conformance claim 2.4. Conformance claim 11 2.5. PP conformance statement 1.5. PP conformance statement 1.6. Security problem definition 1.7. Assets 1.8. Assets 1.9. 3.2. Information leak 1.9. 3.2. Information leak 1.9. 3.2. Information leak 1.9. 3.2. TOE functionality compromise 1.9. 3.1. Assumptions 1.9. 3.2. Assumptions 1.9. 3.2. Assumptions 1.9. 3.3. Organizational security policy 1.9. 3.4. Assumptions	1.2.1. Database Encryption overview	1
1.2.4. Non-TOE and TOE operational environment 1.3. Conventions 1.4. Terms and definitions 1.5. PP organization 1.5. PP organization 1.6. CC conformance claim 2.1. CC conformance claim 2.2. PP conformance claim 2.3. Package conformance claim 2.4. Conformance claim 11 2.5. PP conformance statement 1.6. Security problem definition 1.7. Assets 1.8. Security problem definition 1.9. Assets 1.9. 3.2.1. Unauthorized access 1.9. 3.2.2. Information leak 1.9. 3.2.3. TOE functionality compromise 1.9. 3.4. Assumptions 2.9. 3.4. Assumptions	1.2.2. TOE type and scope	1
1.3. Conventions 1.4. Terms and definitions 1.5. PP organization 11. 2. Conformance claim 2.1. CC conformance claim 2.2. PP conformance claim 2.3. Package conformance claim 2.4. Conformance claim 11. 2.5. PP conformance statement 11. 3. Security problem definition 11. 3. Assets 12. 3.2.1. Unauthorized access 13. 3.2.1. Unauthorized access 13. 3.2.2. Information leak 20. 3.2.3. TOE functionality compromise 3.3. Organizational security policy 3.4. Assumptions	1.2.3. TOE usage and major security features	2
1.4. Terms and definitions 1.5. PP organization 1.5. PP organization 1.5. PP organization 1.5. PP organization 1.6. CC conformance claim 1.7. CC conformance claim 1.7. Per conformance claim 1.8. Package conformance claim 1.9. Package conformance claim 1.9. Per conformance claim 1.9. Per conformance statement 1.9. Security problem definition 1.9. Security problem definition 1.9. Assets 1.0. Assets 1.0. Assets 1.	1.2.4. Non-TOE and TOE operational environment	2
1.5. PP organization 1.5. PP organization 1.5. CC conformance claim 2.1. CC conformance claim 2.2. PP conformance claim 1.5. Package conformance claim 2.4. Conformance claim rationale 2.5. PP conformance statement 1.6. Security problem definition 1.7. Security problem definition 1.8. Assets 1.9. 3.2. Threats 1.9. 3.2.1. Unauthorized access 1.9. 3.2.2. Information leak 1.9. 3.2.3. TOE functionality compromise 1.9. 3.1. Organizational security policy 1.9. 3.1. Assumptions 1.9. 3.2. Assumptions	1.3. Conventions	7
2. Conformance claim 2.1. CC conformance claim 2.2. PP conformance claim 2.3. Package conformance claim 2.4. Conformance claim rationale 2.5. PP conformance statement 3. Security problem definition 3.1. Assets 3.2. Threats 3.2.1. Unauthorized access 3.2.2. Information leak 3.2.3. TOE functionality compromise 3.3. Organizational security policy 3.4. Assumptions	1.4. Terms and definitions	8
2.1. CC conformance claim 2.2. PP conformance claim 1.2.3. Package conformance claim 1.4. Conformance claim rationale 2.5. PP conformance statement 1.5. PP conformance statement 1.6. 3. Security problem definition 1.7. 3.1. Assets 1.8. 3.2. Threats 1.9. 3.2.1. Unauthorized access 1.9. 3.2.2. Information leak 1.0. 3.2.3. TOE functionality compromise 1.0. 3.1. Assumptions 2.1. Assumptions	1.5. PP organization	15
2.1. CC conformance claim 2.2. PP conformance claim 1.2.3. Package conformance claim 1.4. Conformance claim rationale 2.5. PP conformance statement 1.5. PP conformance statement 1.6. 3. Security problem definition 1.7. 3.1. Assets 1.8. 3.2. Threats 1.9. 3.2.1. Unauthorized access 1.9. 3.2.2. Information leak 1.0. 3.2.3. TOE functionality compromise 1.0. 3.1. Assumptions 2.1. Assumptions		
2.2. PP conformance claim 2.3. Package conformance claim 2.4. Conformance claim rationale 2.5. PP conformance statement 3. Security problem definition 3.1. Assets 3.2. Threats 3.2.1. Unauthorized access 3.2.2. Information leak 3.2.3. TOE functionality compromise 3.3. Organizational security policy 3.4. Assumptions		17
2.3. Package conformance claim 2.4. Conformance claim rationale 2.5. PP conformance statement 3. Security problem definition 3.1. Assets 19 3.2. Threats 19 3.2.1. Unauthorized access 19 3.2.2. Information leak 20 3.2.3. TOE functionality compromise 21 3.4. Assumptions 22 3.5. Assumptions 22 3.6. Assumptions		17
2.4. Conformance claim rationale 2.5. PP conformance statement 13. Security problem definition 15. 3.1. Assets 17. 3.2. Threats 18. 3.2.1. Unauthorized access 19. 3.2.2. Information leak 20. 3.2.3. TOE functionality compromise 21. 3.3. Organizational security policy 22. 3.4. Assumptions 23. 4. Assumptions	2.2. PP conformance clam	17
2.5. PP conformance statement 3. Security problem definition 3.1. Assets 19 3.2. Threats 3.2.1. Unauthorized access 3.2.2. Information leak 3.2.3. TOE functionality compromise 3.3. Organizational security policy 3.4. Assumptions	2.3. Package conformance claim	17
3. Security problem definition 3.1. Assets 1.1. Assets 3.2. Threats 3.2.1. Unauthorized access 3.2.2. Information leak 3.2.3. TOE functionality compromise 3.3. Organizational security policy 3.4. Assumptions	2.4. Conformance claim rationale	17
3.1. Assets 3.2. Threats 3.2.1. Unauthorized access 3.2.2. Information leak 3.2.3. TOE functionality compromise 3.3. Organizational security policy 3.4. Assumptions	2.5. PP conformance statement	18
3.2. Threats 3.2.1. Unauthorized access 19 3.2.2. Information leak 20 3.2.3. TOE functionality compromise 21 3.3. Organizational security policy 22 3.4. Assumptions 22 3.5. Toe functionality compromise 25 3.6. Assumptions	3. Security problem definition	19
3.2.1. Unauthorized access 3.2.2. Information leak 3.2.3. TOE functionality compromise 3.3. Organizational security policy 3.4. Assumptions	3.1. Assets	19
3.2.2. Information leak 3.2.3. TOE functionality compromise 2.3.3. Organizational security policy 2.4. Assumptions 2.5. 2.6. 2.6. 2.7. 2.7. 2.7. 2.7. 2.7. 2.7	3.2. Threats	19
3.2.3. TOE functionality compromise 20 3.3. Organizational security policy 20 3.4. Assumptions 21	3.2.1. Unauthorized access	19
3.3. Organizational security policy 2.4 3.4. Assumptions	3.2.2. Information leak	20
3.4. Assumptions 2	3.2.3. TOE functionality compromise	20
	3.3. Organizational security policy	20
4. Security objectives	3.4. Assumptions	21
	4. Security objectives	22

4.1. Security objectives for the operational environment	22
4.2. Security objectives rationale	23
4.2.1. Security objectives rationale for operational environment	23
5. Extended components definition	25
5.1. Identification and authentication	25
5.1.1. TOE Internal mutual authentication	25
5.2. User data protection	25
5.2.1. User data encryption	26
5.3. Security Management	26
5.3.1. ID and password	26
5.4. Protection of the TSF	28
5.4.1. Linkable external entities	28
5.4.2. Protection of stored TSF data	29
5.4.3. TSF Update	30
6. Security requirements	32
6.1. Security functional requirements (Mandatory SFRs)	35
6.1.1. Security audit (FAU)	37
6.1.2. Cryptographic support (FCS)	43
6.1.3. User data protection (FDP)	48
6.1.4. Identification and authentication (FIA)	49
6.1.5. Security management (FMT)	55
6.1.6. Protection of the TSF (FPT)	62
6.1.7. TOE access (FTA)	71
6.2. Security functional requirement (Conditionally mandatory SFR)	73
6.2.1. Security audit (FAU)	74
6.2.2. Cryptographic support(FCS)	76
6.2.3. Identification and authentication (FIA)	79
6.2.4. Protection of the TSF (FPT)	79
6.2.5. TOE access (FTA)	83

6.2.6. Trusted path/channels (FTP)	85
6.3. Security functional requirements (Optional SFRs)	88
6.3.1. Cryptographic support (FCS)	88
6.3.2. Protection of the TSF (FPT)	88
6.4. Security assurance requirements	90
6.4.1. Security Target evaluation	90
6.4.2. Development	95
6.4.3. Guidance documents	96
6.4.4. Life-cycle support	98
6.4.5. Tests	98
6.4.6. Vulnerability assessment	100
6.5. Security requirements rationale	101
6.5.1. Security functional requirements rationale	101
6.5.2. Security assurance requirements rationale	107
6.5.3. Dependency rationale of security functional requirements	108
6.5.4. Dependency rationale of security assurance requirements	111
References	112
Abbreviated terms	113

1. PP introduction

1.1. PP reference

Title	Korean National Protection Profile for Database Encryption	
Version	3.1	
Evaluation Assurance Level	EAL1+(ATE_FUN.1)	
Developer	National Security Research Institute	
Evaluation Criteria	Common Criteria for Information Technology Security Evaluation	
Common Criteria version	CC:2022 R1	
Certification Number	KECS-PP-1350-2025	
Keywords	Database, Encryption	

1.2. TOE overview

1.2.1. Database Encryption overview

Database encryption (hereinafter referred to as "TOE") performs the function of preventing the unauthorized disclosure of confidential information by encrypting the database (hereinafter referred to as "DB").

The encryption target of the TOE is the DB managed by the database management system (hereinafter referred to as "DBMS") in the operational environment of the organization, and the protection profile (hereinafter referred to as "PP") defines the user data as all data before/after encrypted and stored in the DB. Part or all of the user data can be the encryption target, depending on the organizational security policies that runs the TOE.

The DBMS that controls the DB in the operational environment of the organization is different from the DBMS that is directly used by the TOE to control the TSF data (security policy, audit data, etc.).

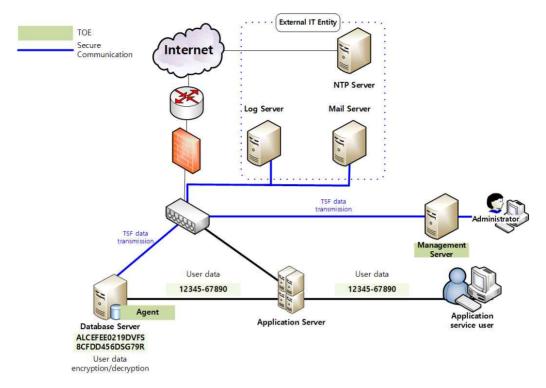
1.2.2. TOE type and scope

The TOE components are provided in the form of hardware appliance or software and shall provide the encryption/decryption function for the user data by each column. The TOE can also provide a one-way encryption method in addition to the encryption/decryption method for each column. The TOE type defined in this PP can be grouped into the 'plug-in type' and 'API type', depending on the TOE operation type. The TOE can support both types. The TOE developed by the plug-in type can generally be composed of the agent and management server, whereas the TOE developed by the API type can be composed of the API module and management server.

The TOE developer can implement the management server with several TOE components by subdividing roles such as the encryption/decryption of the user data, security management function, and cryptographic key management function. For example, additional management tools developed for security management (like management console) can be included in the TOE component. In this case, the security target (hereinafter referred to as "ST") author shall identify all TOE components in the ST.

1.2.3. TOE usage and major security features

The TOE is used to encrypt the user data according to the policy set by the authorized administrator to prevent the unauthorized disclosure of the confidential information. In order that the authorized administrator can operate the TOE securely in the operational environment of the organization, the TOE provides various security features such as the security audit function that records and manages major auditable events; cryptographic support function such as cryptographic key management to encrypt the user and the TSF data, and cryptographic operation; user data protection function that encrypts the user data and protects the residual information; identification and authentication function such as verifying the identity of the authorized administrator, authentication failure handling, and mutual authentication among the TOE components; security management function for security functions, role definition, and configuration; TSF protection functions including protecting the TSF data transmitted among the TOE components, protecting the TSF data stored in the storage that is controlled by the TSF, and TSF self-test; and TOE access function to manage the access session of the authorized administrator.


The DEK (Data Encryption Key) used to encrypt/decrypt the user data is protected by encryption with the KEK (Key Encryption Key). For the requirements regarding how to generate and use the DEK and KEK, refer to 5.1.2. Cryptographic Support (FCS).

1.2.4. Non-TOE and TOE operational environment

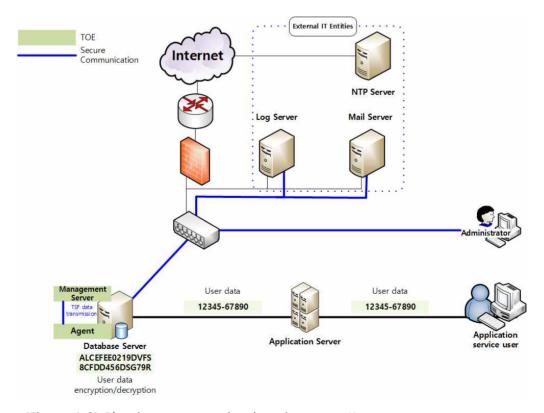
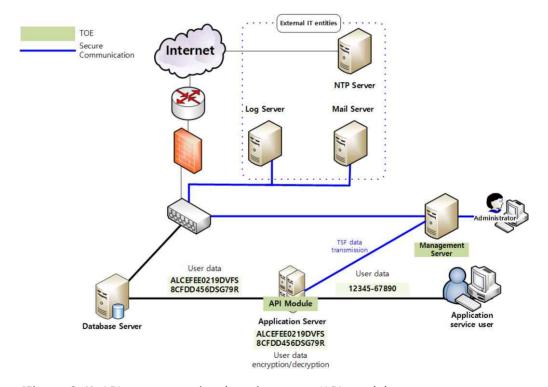

The TOE operational environment defined in this PP can be classified into two: plug-in type and API type.

Figure 1-1 and Figure 1-2 show the general operational environment of the plug-in type. The agent, which is installed in the protected database server of the DB, encrypts the user data of the application server before storing it in the DB according to the policy configured by the authorized administrator, and decrypts the encrypted user data sent from the database server to the application server.

The authorized administrator can encrypt/decrypt the user data through the management server according to the scope of the encryption that is required by the organizational security policy. In addition, the authorized administrator can perform security management through access to the management server. The management server can be installed in the database server along with the agent, or installed separately from the agent. The ST author shall clearly identify the operating location of the management server in the TOE operational environment, depending on the operation type of the TOE component.


[Figure 1-1] Plug-in type operational environment (Agent, management server separate type)

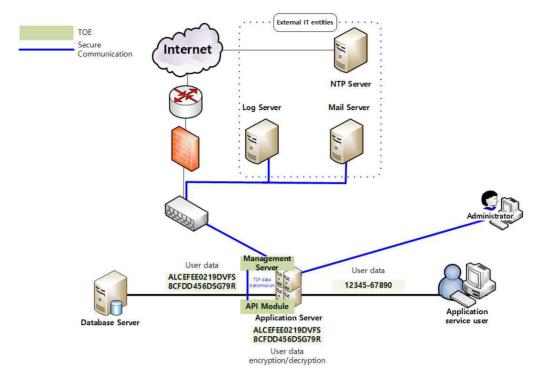

[Figure 1-2] Plug-in type operational environment (Agent, management server integrated type)

Figure 2-1 and Figure 2-2 show the general operational environment of the API type. The application, which is installed in the application server and provides application services, is developed using the API provided by API module in order to use the cryptographic function of the TOE. The API module is installed in the application server and performs encryption/decryption of the user data in accordance with the policies configured by authorized administrator. The user data entered by the application service user is encrypted by the API module, which is installed in the application server, and sent to the database server. The encrypted user data received from the database server is decrypted by the API module, which is installed in the application server, and sent to the application service user.

The authorized administrator can encrypt/decrypt the user data through the management server according to the scope of the encryption required by the organizational security policy. In addition, the authorized administrator can perform security management through access to the management server. The management server can be installed in the application server along with the agent, or installed separately from the API module. The ST author should clearly identify the operating location of the management server in the TOE operational environment, depending on the operation type of the TOE component.

[Figure 2-1] API-type operational environment (API module, management server separate type)

[Figure 2-2] API-type operational environment (API module, management server integrated type)

The communication among the TOE components shall be performed on the cryptographic communication, and even though the TOE is operated as an integrated type, the TSF data shall be shared among the TOE components only through the cryptographic communication. In addition, the cryptographic communication shall be also applied even when communication between external IT entities and TOE components is required except for the NTP server.

The TOE user can be defined in various ways depending on the TOE operation and implementation. For the plug-in type, the authorized administrator who performs security management on the TOE using the management server is identified as the human user of the TOE. The DBMS that manages the DB in the database server and the application which is developed to provide application service in the application server can be the user of the TOE as the external IT entity, if the security function provided by the agent is used. For the API type, the authorized administrator who performs security management on the TOE using the management server is the human user of the TOE. The application developed to provide application service in the application server becomes the user of the TOE as the external IT entity when the security function provided by the API module is used.

The external IT entity needed to operate the TOE includes the NTP server to synchronize time, log server to store the audit data outside and manage the audit data, and email server to notify the authorized administrator in case of audit data loss. The ST author of the TOE complying with this PP shall identify all external IT entities that interact with the TOE in the ST.

The ST author shall include FAU_STG.2, a conditionally mandatory security functional requirement, in the ST when the protected audit trail storage function is implemented in the TOE. If the function is

not implemented in the TOE, the function must be provided in the operating environment (for example: using a DBMS, etc.), and accordingly, the security objectives for the operational environment must be added.

The ST author shall include FPT_STM.1, an optional security functional requirement, in the ST if the TOE implements a function that provides reliable time stamps. If the function is not implemented in the TOE, the function must be provided by the operating environment (for example: provided by the operating system, etc.), and accordingly, the security objectives for the operational environment must be added.

The ST author shall include the conditionally mandatory security functional requirements defined in this PP if the following conditions are met.

- If the TOE provides additional identification and authentication mechanisms (e.g., certificate-based authentication method, OTP method, etc.) in addition to ID/PW-based identification and authentication, FIA_UAU.5 shall be included.
- When providing additional identification and authentication functions, the TOE can provide those functions by receiving the authentication results of external IT entities that interact with the TOE (e.g., 2FA support device that complies with the FIDO standards), and accordingly FPT_LEE.1(Extended) shall be included instead of FIA_UAU.5. In this case, the authentication information used by external IT entities to perform additional identification and authentication methods is safely managed by external IT entities, so the security objectives for the operating environment shall be added accordingly.
- In case of users(authorized administrators) directly access the management server through web browsers or terminal access programs, FTP_TRP.1 shall be included. Assuming that the web server is the TOE operating environment, and if a secure communication path is provided through communication between the user's web browser and web server, the ST author shall add the security objectives for the operational environment instead of including FTP_TRP.1. And if the user's web browser access the management server via the web server, such as when the web server and the management server are physically separated to perform communication, FTP_TRP.1 is included to provide a secure path between the management server and the user, and FTP_ITC.1 shall be included to provide a secure channel between the web server and the management server. FPT_ITT.1 shall be applied when transmitting TSF data between the TOE components which are physically separated.(eg, If communication between the TOE management console and the management server is directly implemented, FTT_ITT.1 shall be applied)
- When the TOE interacts with external IT entities(e.g., mail server, log server, etc.), FTP_ITC.1 shall be included.

Optional security functional requirements can be optionally implemented in the TOE. However, when the TOE additionally provides related capabilities, the ST author must include the corresponding SFRs. The ST author shall pay attention not to omit the security functional requirements for the security features provided by the TOE by referring to the application notes when applying each optional security functional requirement with regard to the applicability of the optional security functional requirements.

This PP has been developed considering various types of the TOE implementation. The ST author complying with this PP, shall describe any non-TOE hardware, software or firmware required by the TOE to operate.

1.3. Conventions

The notation, formatting and conventions used in this PP are consistent with the Common Criteria for Information Technology Security Evaluation.

The CC allows several operations to be performed for functional requirements: iteration, assignment, selection and refinement. Each operation is used in this PP.

Iteration

Iteration is used when a component is repeated with varying operations. The result of iteration is marked with an iteration number in parenthesis following the component identifier, i.e., denoted as (iteration No.).

Assignment

This is used to assign specific values to unspecified parameters (e.g., password length). The result of assignment is indicated in square brackets like [assignment value].

Selection

This is used to select one or more options provided by the CC in stating a requirement. The result of selection is shown as *underlined and italicized*.

Refinement

This is used to add details and thus further restrict a requirement. The result of refinement is shown in **bold text.**

Security Target (ST) Author

This is used to represent the final decision of attributes being made by the ST author. The ST author's operation is denoted in braces, as in {decided by the ST author}. In addition, operations of SFR not completed in the Protection Profile must be completed by the ST author.

"Application notes" is provided to clarify the intent of requirements, provide the information for the optional items in implementation, and define "Pass/Fail" criteria for a requirement. The application notes is provided with corresponding requirements if necessary.

1.4. Terms and definitions

Terms used in this PP, which are the same as in the CC, must follow those in the CC.

Agent Type1

Antivirus products, Software-Based Security USB products, Host Data Loss Prevention products, etc.

- The endpoint on which the agent is located is typically a PC with Windows® operating system accessible to employees within the organization, and if the agent is compromised, data present on the user's host can be compromised and leaked, requiring strict security requirements in terms of confidentiality, integrity, and availability.

Agent Type2

Network Access Control products, Patch Management Systems, etc.

- The endpoint on which the agent is located is typically a PC with Windows® operating system accessible to employees in the organization, and if the agent is compromised, it is unlikely that data present on the user's host will be corrupted or leaked, but it can cause problems in using the resources provided by the organization, requiring security requirements in terms of confidentiality, integrity.

Agent Type3

Database Access Control products, Access Control in Operating System(Server) products, Enterprise security management products, etc.

- Since the endpoint where the agent is located is generally a physically secure environment that can only be accessed by authorized employees of the organization, it corresponds to a product type with a relatively low threat occurrence.

Approved cryptographic algorithm

A cryptographic algorithm selected by Korea cryptographic Module Validation Authority for block cipher, secure hash algorithm, message authentication code, random bit generation, key agreement, public key cipher, digital signatures cryptographic algorithms, etc. considering safety, reliability and interoperability

Application Server

The application server defined in this PP refers to the server that installs and operates the application, which is developed to provide a certain application service by the organization that operates the TOE. The pertinent application reads the user data from the DB, which is located in the database server, by the request of the application service user, or sends the user data to be stored in the DB to the database server.

Approved mode of operation

The mode of cryptographic module using approved cryptographic algorithm

Assets

Entities that the owner of the TOE presumably places value upon

Assignment

Specification of an identified parameter in a functional or assurance component

Attack potential

Measure of the effort needed to exploit a vulnerability in a TOE

Note 1 to entry: The effort is expressed as a function of properties related to the attacker (e.g. expertise, resources, and motivation) and properties related to the vulnerability itself (e.g. window of opportunity, time to exposure).

Augmentation

Addition of one or more requirement(s) to a package

Note 1 to entry: In case of a functional package), such an augmentation is considered only in the context of one package and is not considered in the context with other packages or PPs or STs.

Note 2 to entry: In case of an assurance package, augmentation refers to one or more SARs.

Authorized Administrator

Authorized user to securely operate and manage the TOE

Authentication Data

Information used to verify the claimed identity of a user

Authorized User

Entity who may, in accordance with the SFRs, perform an operation on the TOE

Automated recovery

Recovery without the user's intervention

Can/could

The 'can' or 'could' presented in Application notes indicates optional requirements applied to the TOE by ST author's choice

Column

A set of data values of a particular simple type, one for each row of the table in a relational database

Component

Smallest selectable set of elements on which requirements may be based

Conditioning

The process of increasing the entropy rate per bit by removing the bias from collected noise sources

Critical Security Parameters (CSP)

Information related to security that can erode the security of the encryption module if exposed or changed (e.g., verification data such as secret key/private key, password, or Personal Identification Number).

Class

Set of CC families that share a common focus

Client Type

Vitual Private Network products, Wireless LAN Authentication Products, etc.

- The client is an entity installed on the user's host and serves to request communication with the server on behalf of the user.

Database

A set of data that is compiled according to a certain structure in order to receive, save, and provide data in response to the demand of multiple users to support multiple application duties at the same time. The database related to encryption by column, which is required by this PP, refers to the relational database.

Database Server

The database server defined in this PP refer to the server in which the DBMS managing the protected DB is installed in the organization that operates the TOE

DBMS (Database Management System)

A software system composed to configure and apply the database. The DBMS related to encryption by column, which is required by this PP, refers to the database management system based on the relational database model.

Data Encryption Key (DEK)

Key that encrypts and decrypts the data

Decryption

The act that restoring the ciphertext into the plaintext using the decryption key

Dependency

Relationship between components such that a PP, ST, functional package or assurance package including a component also includes any other components that are identified as being depended upon or include a rationale as to why they are not

Deterministic Random Bit Generator (DRBG)

It consists of an algorithm that generates a bit string from an initial value called a seed and produces the same bit string when the same seed is input.

Encryption

The act that converts the plaintext into the ciphertext using the encryption key

Element

Self-contained description of a security need assigned to SAR or SFR

Endpoint

The point where the TOE components such as agents, clients, etc. are installed and operated without any further sub-interacted entities

Entropy

A measure used to evaluate the unpredictability of data.

A numerical representation of the amount of information contained in data.

It represents disorder or randomness, and the closer it is to a random bit, the higher the entropy.

Entropy rate

The entropy of the data divided by the size of the data, expressed as a value between 0 and 1.

Entropy source

A function or device that combines noise sources, health tests, and conditioning algorithms

External Entity

Human technical system or one of its components interacting with the target of evaluation TOE from outside of the TOE boundary

Evaluation Assurance Level (EAL)

Well-formed package of security assurance requirements representing a point on the predefined assurance scale

Note 1 to entry: EALs are defined in CC Part 5.

Family

Set of components that share a similar goal but differ in emphasis or rigour

Health test

Implemented within a random bit generator to monitor noise sources in real time.

The health test is not a process for identifying statistical problems with noise sources; rather, it is a method for detecting cases where the collected noise sources do not operate normally due to equipment aging, etc.

* For detailed information, refer to the health test defined in Section 5.2 of TTAK.KO-12.0306/R1.

Identity

Representation uniquely identifying entities (e.g. user, process or disk) within the context of the TOE

Iteration

Use of the same component to express two or more distinct requirements

KCMVP, Korea Cryptographic Module Validation Program

A system to validate the security and implementation conformance of cryptographic modules used for the protection of important but not classified information among the data communicated through the information and communication network of the government and public institutions.

Key Encryption Key (KEK)

Key that encrypts and decrypts another cryptographic key

Local access

Connection established through the console port between the administrator and the TOE

Management access

The access to the TOE by using the HTTPS, SSH, TLS, etc to manage the TOE by administrator, remotely

Manual recovery

Recovery through an update server, etc. by the user execution or user intervention

Noise Source

Functions or devices that generate non-deterministic data

Object

Entity in the TOE that contains or receives information, and upon which subjects perform operations

Operation (on a component of the CC)

Modification or repetition of a component. Allowed operations on components are assignment, iteration, refinement and selection

Operation (on an object)

< on an object > specific type of action performed by a subject on an object

Organizational Security Policies

Set of security rules, procedures, or guidelines for an organization wherein the set is currently given by actual or virtual organizations, or is going to be given

Private Key

A cryptographic key which is used in an asymmetric cryptographic algorithm and is uniquely associated with an entity (the subject using the private key), not to be disclosed

Protection Profile (PP)

Implementation-independent statement of security needs for a TOE type

Public Key

A cryptographic key which is used in an asymmetric cryptographic algorithm and is associated with an unique entity (the subject using the public key), it can be disclosed

Public Key (asymmetric) cryptographic algorithm

A cryptographic algorithm that uses a pair of public and private keys

Random bit generator (RBG)

A device or algorithm that outputs a binary sequence that is statistically independent and is not biased. The RBG used for cryptographic application generally generates 0 and 1 bit string, and the sequence can be combined into a random bit block. The RBG is classified into the deterministic and non-deterministic type. The deterministic type RBG is composed of an algorithm that generates bit strings from the initial value called a "seed key," and the non-deterministic type RBG produces output that depends on the unpredictable physical source.

* The cryptographic random bit generator consists of an entropy source used for seed construction and a deterministic random bit generator.

Recommend/be recommended

The 'recommend' or 'be recommended' presented in Application notes is not mandatorily recommended, but required to be applied for secure operations of the TOE

Refinement

Addition of details to a security component

Role

Predefined set of rules on permissible interactions between a user and the TOE

Security Function Policy (SFP)

A Set of rules that describes the specific security action performed by TSF (TOE security functionality) and describe them as SFR (security function requirement)

Secret Key

A cryptographic key which is used in an symmetric cryptographic algorithm and is uniquely associated with one or several entity, not to be disclosed

Security Target (ST)

Implementation-dependent statement of security requirements for a TOE based on a security problem definition

Security attribute

The characteristics of the subject used to define the SFR, user (including the external IT product), object, information, session and/or resources. These values are used to perform the SFR

Security Token (HSM)

A hardware device implemented to process key generation, electronic signature generation, etc., within the device in order to safely save and store confidential information.

Seed

The secret value used to initialize the random bit generator

Selection

Specification of one or more items from a list in a component

Shall/must

The 'shall' or 'must' presented in Application notes indicates mandatory requirements applied to the TOE

Subject

Entity in the TOE that performs operations on objects

SSL (Secure Sockets Layer)

This is a security protocol proposed by Netscape to ensure confidentiality, integrity and security over a computer network

Symmetric cryptographic technique

Encryption scheme that uses the same secret key in mode of encryption and decryption, also known as secret key cryptographic technique

Subject

Active entity in the TOE that performs operations on objects

Target of Evaluation (TOE)

Set of software, firmware and/or hardware possibly accompanied by guidance, which is the subject of an evaluation

Threat Agent

Entity that has potential to exercise adverse actions on assets protected by the TOE

TLS (Transport Layer Security)

This is a cryptographic protocol between a SSL-based server and a client and is described in RFC 2246

TOE Security Functionality (TSF)

Combined functionality of all hardware, software, and firmware of a TOE that is relied upon for the correct enforcement of the SFRs

TSF Data

Data for the operation of the TOE upon which the enforcement of the SFR relies

User

As a human technical system or one of its components interacting with the TOE from outside the TOE boundary, the user in the TOE is an authorized administrator and an authorized end user.

** The types of users related to the SFR are divided into human users and external IT entities. Human users may further be differentiated as local human users, meaning they interact directly with the TOE via TOE devices (e.g. workstations), or remote human users, meaning they interact indirectly with the TOE through another IT product.

User Data

Data for the user, that does not affect the operation of the TSF

1.5. PP organization

Chapter 1 introduces to the Protection Profile, providing Protection Profile references and the TOE overview.

Chapter 2 provides the conformance claims to the CC, PP and package; and describes the claim's conformance rationale and PP conformance statement.

Chapter 3 is a security problem definition that describes security problems in the TOE and the TOE operational environment from the perspective of threats, organizational security policies, and assumptions.

Chapter 4 defines the security objectives for the operating environment supported by the operating environment so that the TOE security functionality can be accurately provided as security objectives. It also presents the rationale, which is a rational reason why the security objectives for the operational environment satisfy the security problem definition.

Chapter 5 defines the extended components additionally required based on the characteristics of Database Encryption.

Chapter 6 describes security functional requirements and assurance requirements as security requirements. If required, Application notes are provided to clarify the meaning of requirements and provide an explanation of detailed guidelines to the ST author for correct operations. It also

CC:2022 R1

presents the rationale, which is a rational reason why the security requirements satisfy the security problem definitions and dependency relationships.

Reference describes the references for users who need more information about the related information than those described in this PP.

Abbreviated terms are listed to define frequently used terms in the PP.

2. Conformance claim

2.1. CC conformance claim

CC		 Common Criteria for Information Technology Security Evaluation, CC:2022, Revision 1 Common Criteria for Information Technology Security Evaluation, Part 1: Introduction and General Model, CC:2022 R1 (CCMB-2022-11-001, 2022. 11.) Common Criteria for Information Technology Security Evaluation, Part 2: Security Functional Components, CC:2022 R1 (CCMB-2022-11-002, 2022.11.) Common Criteria for Information Technology Security Evaluation. Part 3: Security Assurance Components, CC:2022 R1 (CCMB-2022-11-003, 2022.11.) Common Criteria for Information Technology Security Evaluation. Part 4: Framework for the specification of evaluation methods and activities, CC:2022 R1 (CCMB-2022-11-004, 2022.11.) Common Criteria for Information Technology Security Evaluation. Part 5: Pre-defined packages of security requirements, CC:2022 R1 (CCMB-2022-11-005, 2022.11.) Errata and Interpretation for CC:2022 (Release 1) and CEM:2022 (Release 1), CCMB-2024-07-002 Version 1.1, July 2024 			
Conformance claim	Part 2 Security functional components	Extended: FDP_UDE.1, FIA_IMA.1, FMT_PWD.1, FPT_LEE.1, FPT_PST.1, FPT_TUD.1			
	Part 3 Security assurance components	Conformant			
	Package	Augmented: EAL1 augmented (ATE_FUN.1)			

2.2. PP conformance clam

This Protection Profile does not claim conformance to other PPs.

2.3. Package conformance claim

This Protection Profile claims conformance to assurance package EAL1 augmented with ATE_FUN.1.

2.4. Conformance claim rationale

Since this Protection Profile does not claim conformance to other Protection Profiles, it is not necessary to describe the conformance claim rationale.

2.5. PP conformance statement

This Protection Profile requires "strict PP conformance" of any ST or PP, which claims conformance to this PP.

3. Security problem definition

The security problem definition defines the threats, organizational security policies, and assumptions that the TOE and TOE operational environment are intended to handle.

3.1. Assets

The basic assets protected by Database Encryption are as follows.

- Database managed by DBMS in the organization's operational environment
- Important data related to the TOE itself and TOE operation (e.g. TSF data)

3.2. Threats

Threat agents are IT entities and human users that cause harm to assets through unauthorized access or abnormal methods, and can generate various threats as follows. At this time, threat agents to the TOE have a basic level of expertise, resources, and motivation.

3.2.1. Unauthorized access

T.SESSION_HIJACK

Threat agents can access user screens that are left unattended and logged in, or take advantage of user sessions that are not properly terminated while logged out to steal user authorization.

T.RETRY_AUTH_ATTEMPT

Using information gained by continuously attempting authentication, threat agents can successfully authenticate and then impersonate an authorized user to access the TOE.

T.IMPERSONATION

Threat agents can access the TOE by impersonating an authorized user, TOE components, etc.

T.REPLAY

Threat agents can find out and copy the authentication information, and replay it to access the TOE.

T.WEAK_PASSWORD

Threat agents can access the TOE by obtaining poorly managed passwords such as using the default values for passwords and then impersonating an authorized administrator. If low-level

CC:2022 R1

password rules are applied, threat agents can access the TOE by impersonating an authorized administrator.

3.2.2. Information leak

T.UNAUTHORIZED_INFO_LEAK

Threat agents can leak important user information stored in the database in an unauthorized manner.

T.STORED_DATA_LEAKAGE

Threat agents can leak important data (e.g. cryptographic keys, TOE settings, etc.) stored inside the TOE or in external entities (e.g. DBMS) that interact with the TOE in an unauthorized manner.

T.TRANSMISSION_DATA_DAMAGE

Threat agents can leak or modify transmission data between TOE components and with external IT entities in an unauthorized manner.

T.WEAK_CRYPTO_PROTOCOLS

Threat agents can analyze traffic that uses weak cryptographic communication protocols or low cryptographic strength to infer crypto key information or find out the content of communication ciphertext.

3.2.3. TOE functionality compromise

T.TSF COMPROMISE

Threat agents can compromise the TSF through unauthorized access, etc. to cause malfunction of the TOE functions or disable the TOE functions.

3.3. Organizational security policy

P.AUDIT

To track accountability for security-related actions, security-related events shall be recorded and maintained, and the recorded data shall be reviewed. In addition, the space on the disk available for storing audit data shall be regularly checked to prevent the loss of audit data, and the stored audit data must be protected from unauthorized modification or deletion.

P.SECURE_OPERATION

Management means shall be provided so that the administrator can securely set up the TOE to comply with the organizational security policy and operate it correctly according to the TOE operation manual.

P.CRYPTO_STRENGTH

Organizations shall apply encryption measures for storage and transmission of important data, such as passwords for user authentication, and use secure cryptographic algorithms.

Application notes

o The cryptographic algorithm used to store and transmit important information shall use a standard algorithm with a security strength of 112 bits or higher.

3.4. Assumptions

It is assumed that the following conditions exist in the TOE operational environment that accepts this PP.

A.PHYSICAL_CONTROL

The place where the TOE is installed and operated shall be equipped with access control and protection facilities so that only authorized administrator can access.

A.TRUSTED_ADMIN

The authorized administrator of the TOE is non-malicious, has been appropriately trained for the TOE management functions, and accurately fulfills their duties in accordance with administrator guidelines.

A.SECURE_DEVELOPMENT

Developers who use TOE to link the encryption function to the application or DBMS shall comply with the requirements of the manual provided with the TOE to ensure that the security function of the TOE is safely applied.

A.OPERATION_SYSTEM_REINFORCEMENT

The reliability and security of the operating system shall be ensured by reinforcing the latest vulnerabilities in the operating system on which the TOE is installed and operated.

4. Security objectives

The followings are the security objectives handled by technical and procedural method supported from operational environment in order to provide the TOE security functionality accurately.

4.1. Security objectives for the operational environment

OE.LOG BACKUP

The authorized administrator shall periodically check a spare space of audit data storage in case of the audit data loss, and carry out the audit data backup (external log server or separate storage device, etc.) to prevent audit data loss.

OE.PHYSICAL_CONTROL

The place where the TOE is installed and operated shall be equipped with access control and protection facilities so that only authorized administrator can access.

OE.TRUSTED_ADMIN

The authorized administrator of the TOE shall be non-malicious, has been appropriately trained for the TOE management functions, and accurately fulfills their duties in accordance with administrator guidelines.

OE.SECURE_DEVELOPMENT

Developers who use TOE to link the encryption function to the application or DBMS must comply with the requirements of the manual provided with the TOE to ensure that the security function of the TOE is safely applied.

OE.OPERATION SYSTEM RE-INFORCEMENT

The authorized administrator of the TOE shall ensure the reliability and security of the operating system by performing the reinforcement on the latest vulnerabilities of the operating system in which the TOE is installed and operated.

Application notes

o Depending on the implementation type of the TOE, the TOE components(agent in software type, API module, management server) may not use the operating system independently, so care shall be taken that the operating system related settings of other external entities operating in the same operating system do not affect the secure operation of the TOE.

4.2. Security objectives rationale

4.2.1. Security objectives rationale for operational environment

	OE.LOG_BACKUP	OE.PHYSICAL_PROTECT ION	OE.TRUSTED_ADMIN	OE.SECURE_DEVELOPM ENT	OE.OPERATION_SYSTEM _REINFORCEMENT
P.AUDIT	0				
P.SECURE_OPERATION			0		
A.PHYSICAL_PROTECTIO N		0			
A.TRUSTED_ADMIN	0		0		
A.SECURE_DEVELOPMEN T				0	
A.OPERATION_SYSTEM_R EINFORCEMENT					0

[Table 1] correspondence with 'security problem definition' and 'security objectives for the operational environment'

P.AUDIT OE.LOG_BACKUP

P.AUDIT is performed by OE.LOG_BACKUP.

OE.LOG_BACKUP ensures that regular audit data storage space is checked by the administrator as well as the TOE function, and regular log backups or log transmission to an external log server are performed to prevent log records from being lost.

P.SECURE_OPERATION OE.TRUSTED_ADMIN

P.SECURE_OPERATION is performed by OE.TRUSTED_ADMIN.

OE.TRUSTED_ADMIN ensures that the administrator operates TOE accurately in accordance with the organizational security policy and operating manual.

A.PHYSICAL_PROTECTION OE.PHYSICAL_PROTECTION

A.PHYSICAL_PROTECTION is supported by OE.PHYSICAL_PROTECTION.

OE.PHYSICAL_PROTECTION places the management server in a place with protective facilities, and controls access so that only authorized administrators can access them.

A.TRUSTED_ADMIN OE.LOG_BACKUP

A.TRUSTED_ADMIN is supported by OE.TRUSTED_ADMIN, OE.LOG_BACKUP.

OE.TRUSTED_ADMIN has no malicious intent, is properly trained in TOE management functions, and ensure that they perform their duties accurately according to administrator guidelines.

OE.LOG_BACKUP ensures that the authorized administrator periodically checks a spare space of audit data storage in case of the audit data loss, and carries out the audit data backup (external log server or separate storage device, etc.) to prevent audit data loss.

A.SECURE_DEVELOPMENT

OE.SECURE_DEVELOPMENT

A.SECURE_DEVELOPMENT is supported by OE.SECURE_DEVELOPMENT.

OE.SECURE_DEVELOPMENT ensures that developers who use the TOE to link encryption functions to applications or DBMS comply with the requirements of the documentation provided with the TOE so that the security functions of the TOE are safely applied.

A.OPERATION_SYSTEM_REINFORCEMENT

OE.OPERATION_SYSTEM_REINFORCEMENT

A.OPERATION_SYSTEM_REINFORCEMENT is supported by OE.OPERATION_SYSTEM_REINFORCEMENT.

OE.OPERATION_SYSTEM_REINFORCEMENT ensures the reliability and safety of the operating system by reinforcing the latest vulnerabilities of the operating system in which the TOE is installed and operated.

5. Extended components definition

5.1. Identification and authentication

5.1.1. TOE Internal mutual authentication

Family Behaviour

This family defines requirements for providing mutual authentication between TOE components in the process of user identification and authentication.

Component leveling

FIA_IMA.1 TOE Internal mutual authentication requires that the TSF provides mutual authentication function between TOE components in the process of user identification and authentication.

Management: FIA_IMA.1

There are no management activities foreseen.

Audit: FIA_IMA.1

The following actions should be auditable if FAU_GEN Security audit data generation is included in the PP, PP-Module, functional package or ST:

a) Minimal: Success and failure of mutual authentication

5.1.1.1. FIA_IMA.1 TOE Internal mutual authentication

Component

relationships

Hierarchical to No other components.

Dependencies No dependencies.

FIA_IMA.1.1 The TSF shall perform mutual authentication between [assignment: different

parts of TOE] using the [assignment: authentication protocol] that meets the

following [assignment: list of standards].

5.2. User data protection

5.2.1. User data encryption

Family Behaviour

This family provides requirements to ensure confidentiality of user data.

Component leveling

FDP_UDE.1 User data encryption requires confidentiality of user data.

Management: FDP_UDE.1

The following actions could be considered for the management functions in FMT:

a) Management of user data encryption/decryption rules

Audit: FDP_UDE.1

The following actions should be auditable if FAU_GEN Security audit data generation is included in the PP, PP-Module, functional package or ST:

a) Minimal: Success and failure of user data encryption/decryption

5.2.1.1. FDP_UDE.1 User data encryption

Component

relationships

Hierarchical to No other components.

Dependencies FCS_COP.1 Cryptographic operation

FDP_UDE.1.1 TSF shall provide TOE users with the ability to encrypt/decrypt user data

according to [assignment: the list of encryption/decryption methods]

specified.

5.3. Security Management

5.3.1. ID and password

Family Behaviour

This family defines the capability that is required to control ID and password management used in the TOE, and set or modify ID and/or password by authorized users.

Component leveling

FMT_PWD.1 ID and password management, requires that the TSF provides the management function of ID and password.

Management: FMT_PWD.1

The following actions could be considered for the management functions in FMT:

a) Management of ID and password configuration rules.

Audit: FMT_PWD.1

The following actions should be auditable if FAU_GEN Security audit data generation is included in the PP, PP-Module, functional package or ST:

a) Minimal: All changes of the password.

5.3.1.1. FMT_PWD.1 Management of ID and password

Component
relationships

Hierarchical to N

No other components.

Dependencies

FMT_SMF.1 Specification of management functions

FMT_SMR.1 Security roles

FMT_PWD.1.1

The TSF shall restrict the ability to manage the password of [assignment: *list of functions*] to [assignment: *the authorized identified roles*].

- 1. [assignment: password combination rules and/or length]
- 2. [assignment: other management such as management of special characters unusable for password, etc.]

FMT_PWD.1.2

The TSF shall restrict the ability to manage the ID of [assignment: *list of functions*] to [assignment: *the authorized identified roles*].

- 1. [assignment: ID combination rules and/or length]
- 2. [assignment: other management such as management of special characters unusable for ID, etc.]

FMT_PWD.1.3

The TSF shall provide the capability for [selection, choose one of: *setting ID* and password when installing, setting password when installing, changing the ID and password when the authorized administrator accesses for the first time, changing the password when the authorized administrator accesses for the first time].

Application notes

- o If the TOE does not provide the capability for managing the ID and password combination rules by authorized roles, etc., 'None.' may be specified in assignment operations of FMT_PWD.1.1, FMT_PWD.1.2.
- o The ID and password combination rules that can be set by authorized roles may include minimum and maximum length setting, mixing rule setting involving English upper case/lower case/number/special characters, etc.

5.4. Protection of the TSF

5.4.1. Linkable external entities

Family Behaviour

This family (FPT_LEE, Linkable External Entities) defines the requirement for the TSF to perform security functions with the support of external entities. In this family, external entities refer to software or hardware, but human users are not counted as external entities.

Component leveling

FPT_LEE.1, linkable external entities, requires the TSF to provide the security functions by linking with external entities.

Management: FPT_LEE.1

There are no management activities foreseen.

Audit: FPT_LEE.1

The following actions should be auditable if FAU_GEN Security audit data generation is included in the PP, PP-Module, functional package or ST:

a) Minimal: Result of the execution of the security function provided by linking with external entities

5.4.1.1. FPT_LEE.1 Linkable External Entities

Component

relationships

Hierarchical to No other components.

Dependencies No dependencies.

FPT_LEE.1.1

The TSF shall perform [assignment: *List of actions*] and provide [assignment: *List of functions*] by linking with external entities.

Application notes

- o In FPT_LEE.1.1, [assignment: List of actions] means the way the TSF is linked with external entities, such as API function call.
- o In FPT_LEE.1.1, [assignment: List of functions] shall specify the security functions (e.g. verification of secrets, protection of authentication feedback, etc.) provided by the TSF in linkage with external entities

5.4.2. Protection of stored TSF data

Family Behaviour

This family defines rules to protect TSF data stored within containers controlled by the TSF from the unauthorized modification or disclosure.

Component leveling

FPT_PST.1 Basic protection of stored TSF data, requires the protection of TSF data stored in containers controlled by the TSF.

Management: FPT_PST.1

There are no management activities foreseen.

Audit: FPT_PST.1

There are no auditable events foreseen.

5.4.2.1. FPT_PST.1 Basic protection of stored TSF data

Component

relationships

Hierarchical to No other components.

Dependencies No dependencies.

FPT_PST.1.1 The TSF shall protect [assignment: TSF data] stored in containers controlled

by the TSF from the unauthorized [selection: disclosure, modification].

Application notes

- o Containers controlled by the TSF mean storage in the TOE or external entities (DBMS, etc.)that interact with the TOE.
- o Examples of TSF data to be protected as follows:
 - User password, cryptographic key (pre-shared key, symmetric key, private key, etc), TOE configuration values (security policy, configuration parameters), audit data, etc.
- o The TSF data can be encrypted and stored to be protected from the unauthorized disclosure or modification.

5.4.3. TSF Update

Family Behavior

This family defines TOE firmware/software update requirements.

Component leveling

FPT_TUD.1 TSF security patch update, requires trusted update of the TOE firmware/software including the capability to verify the validity on the update file before installing updates.

Management: FPT_TUD.1

The following actions could be considered for the management functions in FMT:

a) Management of update file verification mechanism

Audit: FPT_TUD.1

The following actions should be auditable if FAU_GEN Security audit data generation is included in the PP, PP-Module, functional package or ST:

a) Minimal: Update file verification result (success, failure)

5.4.3.1. FPT_TUD.1 TSF Security Patch Update

Component

relationships

Hierarchical to No other components.

Dependencies No dependencies.

FPT_TUD.1.1 The TSF shall provide the capability to view the versions information of the

TOE to [assignment: the authorized identified roles].

The TSF shall verify validity of the update files using [selection: *hash value comparison, digital signature verification*] before installing updates.

Application notes

o The TSF shall provide the capability to check the current version of TOE that most recently installed and executed by authorized roles.

o The latest updates and security patches are essential to remove security vulnerabilities. The validity verification on the update files is required since the installation of update files without any verification can result in system malfunction, or service failures, etc.

6. Security requirements

The security requirements specify security functional requirements and assurance requirements that must be satisfied by the TOE that claims conformance to this PP.

The security functional requirements included in this PP are derived from CC Part 2 and Chapter 5 Extended Components Definition.

In addition, the security functional requirements are classified into mandatory SFRs and conditionally mandatory SFRs, optional SFRs, as follows.

- Mandatory SFRs: are required to be mandatorily implemented in the 'Database Encryption'.
- Conditionally mandatory SFRs: are required to be mandatorily implemented in 'Database Encryption' if the stated conditions are met.
- Optional SFRs: are not required to be mandatorily implemented in 'Database Encryption'.
 However, when the TOE additionally provides related capabilities, the ST author
 must include the corresponding SFRs.

The following table summarizes the security functional requirements used in the PP.

Functional class	Security functional components		Remarks
	FAU_ARP.1	Security alarms	Mandatory SFR
	FAU_GEN.1	Audit data generation	Mandatory SFR
	FAU_SAA.1	Potential violation analysis	Mandatory SFR
	FAU_SAR.1	Audit review	Mandatory SFR
	FAU_SAR.3	Selectable audit review	Mandatory SFR
FAU	FAU_STG.1	Audit data storage location	Mandatory SFR
	FAU_STG.2	Protected audit data storage	Conditionally mandatory SFR
	FAU_STG.4	Action in case of possible audit data loss	Conditionally mandatory SFR
	FAU_STG.5	Prevention of audit data loss	Conditionally mandatory SFR
FCS	FCS_CKM.1(1)	Cryptographic key generation (User data encryption)	Mandatory SFR
	FCS_CKM.1(2)	Cryptographic key generation	Mandatory SFR

Functional class		Security functional components	Remarks
		(TSF data encryption)	
	FCS_CKM.2	Cryptographic key distribution	Optional SFR
	FCS_CKM.5	Cryptographic key derivation	Conditionally mandatory SFR
	FCS_CKM.6	Timing and event of cryptographic key destruction	Mandatory SFR
	FCS_COP.1(1)	Cryptographic operation (User data encryption)	Mandatory SFR
	FCS_COP.1(2)	Cryptographic operation (TSF data encryption)	Mandatory SFR
	FCS_RBG.1	Random bit generation (RBG)	Mandatory SFR
	FCS_RBG.2	Random bit generation (External seeding)	Conditionally mandatory SFR
	FCS_RBG.3	Random bit generation (Internal seeding – Single source)	Conditionally mandatory SFR
	FCS_RBG.4	Random bit generation (Internal seeding – Multiple sources)	Conditionally mandatory SFR
	FCS_RBG.5	Random bit generation (Combining entropy sources)	Conditionally mandatory SFR
	FDP_UDE.1	User data encryption (Extended)	Mandatory SFR
FDP	FDP_RIP.1	Subset residual information protection	Mandatory SFR
	FIA_AFL.1	Authentication failure handling	Mandatory SFR
	FIA_IMA.1	TOE Internal mutual authentication (Extended)	Mandatory SFR
	FIA_SOS.1	Verification of secrets	Mandatory SFR
	FIA_UAU.1	Timing of authentication	Mandatory SFR
FIA	FIA_UAU.4	Single-use authentication mechanisms	Mandatory SFR
	FIA_UAU.5	Multiple authentication mechanisms	Conditionally mandatory SFR
_	FIA_UAU.7	Protected authentication feedback	Mandatory SFR
	FIA_UID.1	Timing of identification	Mandatory SFR
	FMT_MOF.1	Management of security functions behaviour	Mandatory SFR
FMT	FMT_MTD.1	Management of TSF data	Mandatory SFR
	FMT_PWD.1	Management of ID and password (Extended)	Mandatory SFR

Functional class	Security functional components		Remarks
	FMT_SMF.1	Specification of management functions	Mandatory SFR
	FMT_SMR.1	Security roles	Mandatory SFR
	FPT_FLS.1	Failure with preservation of secure state	Mandatory SFR
	FPT_ITT.1	Basic internal TSF data transfer protection	Mandatory SFR
	FPT_LEE.1	Linkable external entities – authentication (Extended)	Conditionally mandatory SFR
FPT FPT	FPT_PST.1	Basic protection of stored TSF data (Extended)	Mandatory SFR
	FPT_RCV.1	Manual recovery	Conditionally mandatory SFR
	FPT_RCV.2	Automated recovery	Conditionally mandatory SFR
	FPT_STM.1	Reliable time stamps	Optional SFR
	FPT_TST.1	TSF testing	Mandatory SFR
	FPT_TUD.1	TSF security patch update (Extended)	Conditionally mandatory SFR
	FTA_MCS.2	Per user attribute limitation on multiple concurrent sessions	Mandatory SFR
	FTA_SSL.1	TSF-initiated session locking	Conditionally mandatory SFR
FTA	FTA_SSL.3	TSF-initiated termination	Conditionally mandatory SFR
	FTA_TSE.1(1)	TOE session establishment	Mandatory SFR
	FTA_TSE.1(2)	TOE session establishment	Conditionally
	FTP_ITC.1	Inter-TSF trusted channel	mandatory SFR Conditionally mandatory SFR
FTP	FTP_TRP.1	Trusted path	Conditionally mandatory SFR

[Table 2] Security functional requirements

6.1. Security functional requirements (Mandatory SFRs)

The database encryption that claims conformance to this PP must meet the following 'Mandatory SFRs'.

Functional class	Security functional components	
	FAU_ARP.1	Security alarms
	FAU_GEN.1	Audit data generation
FALL	FAU_SAA.1	Potential violation analysis
FAU	FAU_SAR.1	Audit review
	FAU_SAR.3	Selectable audit review
	FAU_STG.1	Audit data storage location
	FCS_CKM.1(1)	Cryptographic key generation (User data encryption)
	FCS_CKM.1(2)	Cryptographic key generation (TSF data encryption)
500	FCS_CKM.4	Cryptographic key destruction
FCS	FCS_COP.1(1)	Cryptographic operation (User data encryption)
	FCS_COP.1(2)	Cryptographic operation (TSF data encryption)
	FCS_RBG.1	Random bit generation
500	FDP_UDE.1	User data encryption (Extended)
FDP	FDP_RIP.1	Subset residual information protection
	FIA_AFL.1	Authentication failure handling
	FIA_IMA.1	TOE Internal mutual authentication (Extended)
FIA	FIA_SOS.1	Verification of secrets
	FIA_UAU.1	Timing of authentication
	FIA_UAU.4	Single-use authentication mechanisms
	FIA_UAU.7	Protected authentication feedback

Functional class	Security functional components		
	FIA_UID.1 Timing of identification		
	FMT_MOF.1 Management of security functions behaviour		
	FMT_MTD.1	Management of TSF data	
FMT	FMT_PWD.1	Management of ID and password (Extended)	
	FMT_SMF.1	Specification of management functions	
	FMT_SMR.1	Security roles	
	FPT_FLS.1	Failure with preservation of secure state	
FPT	FPT_ITT.1 Basic internal TSF data transfer protection		
	FPT_PST.1	Basic protection of stored TSF data (Extended)	
FTA_MCS.2 Per user attribute limitation on multiple sessions		Per user attribute limitation on multiple concurrent sessions	
	FTA_TSE.1(1)	TOE session establishment	

[Table 3] Mandatory security functional requirements

6.1.1. Security audit (FAU)

6.1.1.1. FAU_ARP.1 Security alarms

Component relationships

Hierarchical to No other components.

Dependencies FAU_SAA.1 Potential violation analysis

FAU_ARP.1.1 The TSF shall take [assignment: list of actions] upon detection of a potential

security violation.

Application notes

o If the TOE self-test result is a failure, response functions shall be performed.

- Examples of response functions to be performed when the self-test result is a failure are as follows:
 - <u>Termination of program execution, warning message screen display, restart process, etc.</u>
- o If the TOE integrity verification result is a failure, response functions shall be performed.
 - Examples of response functions to be performed when the integrity verification result is a failure are as follows:
 - Termination of program execution, warning message screen display, etc.
- The TOE agents or clients shall verify the integrity periodically or upon the authorized administrator's request and provide the administrator with a result notification function.
 - \triangle In case of abnormality in the integrity verification result, \triangle integrity verification result by the administrator shall be notified to the administrator.

6.1.1.2. FAU_GEN.1 Audit data generation

Component relationships

Hierarchical to No other components.

Dependencies FPT_STM.1 Reliable time stamps

FAU_GEN.1.1 The TSF shall be able to generate audit data of the following auditable

events:

a) Start-up and shutdown of the audit functions;

b) All auditable events for the not specified level of audit;

c) [assignment: other specifically defined auditable events].

FAU_GEN.1.2 The TSF shall record within the audit data at least the following

information:

a) Date and time of the auditable event, type of event, subject identity (if

- applicable), and the outcome (success or failure) of the event;
- b) For each audit event type, based on the auditable event definitions of the functional components included in the PP, PP-Module, functional package or ST, [assignment: *other audit relevant information*].

Application notes

1. Generate audit records related to Database Encryption

Security Functional Components	Audit events	Additional audit information
FDP_UDE.1	Success and failure of user data encryption/decryption	

2. Generation of other audit records

- o The TOE shall generate audit records for major audit events.
 - [Table 4] below shows the audit events for which audit records must be generated.

Sub-category	Audit events	Additional audit information
	User login and logout	
Identification and	User registration, change and deletion The reaching of the threshold for the unsuccessful user	
authentication	authentication attempts and the actions taken All changes of the password	
	Registration, deletion and change IP address of the management terminals.	
Security	Execution of security management function and all changes and deletions of security attribute values.	Changed
	** However, among the security management functions,	security
management	'Audit record inquiry' and 'TOE version information inquiry' functions are excluded.	attribute data
	Default account(ID)/Password change	
	Management terminal access IP blocking	
Turrete d	User's session locking or termination	
rrustea	Response actions when duplicate login attempts of the same	
session	decount are detected	
management	Denial of new sessions based on the limit on the number of concurrent sessions	
Cryptographic key	Cryptographic key generation failure	

generation		
Cryptographic	Cryptographic operation failure (including cryptographic	
operation	operation type)	
Audit record	Start-up and shutdown of the TOE audit functions in the	
Audit record	form of H/W appliance	

[Table 4] Major mandatory audit events to be recorded

- [Table 5] below shows the audit events for which audit records must be generated when providing a function.

Sub-category	Audit events	Additional audit information
	Execution of self-test	Failed security function
Self-protection	Execution of integrity verification of the TOE itself	Components with failed integrity verification
Update	Updated files validity verification by the administrator	
protection	Execution of update files validity verification	
Audit records	Start-up and shutdown of the TOE audit function in the form of software Response actions when audit record fails to be stored	
Security management	Changes in agent registration status	

[Table 5] Audit events that must be recorded when providing a function

- o If the TOE detects an attempt to reuse authentication information that is prohibited for reuse, authentication shall fail and an audit record of the authentication failure event shall be generated.
- o Audit records shall be generated for self-test results.
- o Integrity verification contents and results shall be confirmed through <u>screen display, audit</u> <u>records.</u>
- o Audit records shall be generated for integrity verification results.
- o Update file validation results(success•failure) shall be recorded in audit records.
- o Audit records shall be generated for the update installation results and the reason for failure.
- o Audit records shall be generated when the session locking or termination function is activated.
- o Audit records shall be generated when blocking duplicate access.

- o Audit records shall not contain more information than necessary.
 - Items that shall be included at least in audit records are as follows.
 - The date and time of the event, the type of event, the identity of the subject that caused the event (e.g., <u>account, process, IP, etc.</u>), and the outcome of the event (success•failure)
 - Information such as authentication information (e.g., *password, etc.*) and cryptographic key shall not be stored in the audit records.
- o Sensitive data (e.g., password, resident registration number, etc.) shall not be recorded, or shall be generated by processing with masking if record is inevitable.
- o Each component of the TOE shall generate audit records using trusted time information.
 - Trusted time information should use the time information provided by the NTP server or the operating system.
- o If the WAS(*Tomcat, Jesus, etc.*) is included in the TOE package, the TOE shall be implemented so that important information is not included in the WAS log.
 - It can be implemented so that the log may be left only in the TOE's audit record storage without leaving the WAS log.
 - Important information such as passwords and encryption keys shall not be left in plain text in the WAS log.
- o Clients and agents shall generate audit records listed in the following [Table 6].

Security function	Audit event	Additional audit information
Self-protection	Execution of integrity verification and its results	
Security management	When providing security management functions, execution of security management functions and any changes of security attribute values.	Changed security attribute data
Agent start-up When end users can request the audit record to be transmitted to the server through security management, execution of transmission of the audit record.		
Secure update and file distribution	(When providing online update function) Execution of digital signature verification of files received from the server and external update server and its results	Files that has failed digital signature verification

[Table 6] Major audit events to be generated

- The sponsors shall describe the audit list for major events provided by agents or clients in

the guidance documents.

- The integrity verification results shall be generated as audit records.
- o The audit records of clients and agents shall include key information for each event.
 - The date and time, event type, identity of the subject who caused the event, and the outcome of the event shall be included.
- o If there is a server, the function to transmit the major audit records generated by agents or clients to the server shall be provided.
 - [Table 6] The server transmission function of the audit records described in the major audit events to be generated shall be implemented.
 - After disconnection from the server, the audit records loaded after the disconnection shall be all transmitted to the server when it is recovered.
 - Protection of audit records transmitted to the server shall satisfy the requirements of FPT ITT.1.
- o The update file digital signature verification result (success or failure) shall be recorded in the audit.

6.1.1.3. FAU_SAA.1 Potential violation analysis

Component relationships

Hierarchical to No other components.

Dependencies FAU_GEN.1 Audit data generation

FAU_SAA.1.1 The TSF shall be able to apply a set of rules in monitoring the audited

events and based upon these rules indicate a potential violation of the

enforcement of the SFRs.

FAU_SAA.1.2 The TSF shall enforce the following rules for monitoring audited events:

- a) Accumulation or combination of [assignment: *subset of defined auditable events*] known to indicate a potential security violation
- b) [assignment: any other rules]

Application notes

- o If the result of the TOE's self-test is failure, the response function shall be performed.
- o The TOE shall perform the response function if the integrity verification fails.
- o The TOE agents or clients shall verify the integrity periodically or upon the authorized administrator's request and provide the administrator with a result notification function.
 - △In case of abnormality in the integrity verification results △Integrity verification results by the administrator shall be notified to the administrator.

6.1.1.4. FAU_SAR.1 Audit review

CC:2022 R1

Component relationships

Hierarchical to No other components.

Dependencies FAU_GEN.1 Audit data generation

FAU_SAR.1.1 The TSF shall provide [authorized administrator] with the capability to read

[all the audit data] from the audit data

FAU_SAR.1.2 The TSF shall provide the audit data in a manner suitable for the

authorized administrator to interpret the information.

Application notes

o The TOE shall provide a function for the authorized administrator to inquire the audit record.

- The audit record shall be inquired only through the security function provided by the TOE.
- The TOE shall provide audit records for the authorized administrator to properly interpret the information.

6.1.1.5. FAU_SAR.3 Selectable audit review

Component relationships

Hierarchical to No other components.

Dependencies FAU SAR.1 Audit review

FAU_SAR.3.1 The TSF shall provide the ability to apply [assignment: methods of selection

and/or ordering] of audit data based on [assignment: criteria with logical

relations].

Application notes

o The TOE shall provide a function for the administrator to select a logical condition when inquiring audit records, and to search or sort the records according to various conditions.

6.1.1.6. FAU_STG.1 Audit data storage location

Component relationships

Hierarchical to No other components.

Dependencies FAU_GEN.1 Audit data generation

FTP_ITC.1 Inter-TSF trusted channel

FAU_STG.1.1 The TSF shall be able to store generated audit data on the [selection: TOE

itself, transmit the generated audit data to an external IT entity using a trusted channel according to FTP_ITC, [assignment: other storage location(s)].

]

응용 시 주의사항

- o A function to store audit records in local storage or transmit them to an external IT entity in real time shall be implemented.
- o If audit records are stored in a log server outside the TOE, cryptographic communication shall be performed.
 - If syslog is supported, it shall support cryptographic transmission through <u>syslog over</u> <u>TLS(RFC 5424)</u>, or syslog over <u>DTLS(RFC 6012)</u>, etc.
 - The cryptographic algorithm used, cryptographic key security, and cryptographic key storage method shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.

6.1.2. Cryptographic support (FCS)

6.1.2.1. FCS_CKM.1(1) Cryptographic key generation (User data encryption)

Component relationships

Hierarchical to No other components.

Dependencies [FCS_CKM.2 Cryptographic key distribution, or

FCS_CKM.5 Cryptographic key derivation, or

FCS_COP.1 Cryptographic operation]

FCS_CKM.3 Cryptographic key access

[FCS_RBG.1 Random bit generation, or

FCS_RNG.1 Generation of random numbers]

FCS_CKM.6 Timing and event of cryptographic key destruction

FCS_CKM.1.1

The TSF shall generate **data encryption keys(DEK)** in accordance with a specified cryptographic key generation algorithm [assignment: *cryptographic key generation algorithm*] and specified cryptographic key sizes [assignment: *cryptographic key sizes*] that meet the following: [assignment: *list of standards*].

Application notes

- o The TOE shall use the random bit generator of the validated cryptographic module when generating encryption key required for database encryption.
 - It shall be applied when generating data encryption key(DEK).
 - The entropy of the random bit generator SEED value shall be 2112 or higher.

6.1.2.2. FCS_CKM.1(2) Cryptographic key generation (TSF data encryption)

Component relationships

Hierarchical to No other components.

Dependencies [FCS_CKM.2 Cryptographic key distribution, or

FCS_CKM.5 Cryptographic key derivation, or

FCS_COP.1 Cryptographic operation]

FCS_CKM.3 Cryptographic key access

[FCS_RBG.1 Random bit generation, or

FCS_RNG.1 Generation of random numbers]

FCS_CKM.6 Timing and event of cryptographic key destruction

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified

cryptographic key generation algorithm [assignment: *cryptographic key generation algorithm*] and specified cryptographic key sizes [assignment: *cryptographic key sizes*] that meet the following: [assignment: *list of standards*].

Application notes

o The TOE shall generate cryptographic keys in a secure method.

- Examples of secure cryptographic key generation methods are as follows:
 - Key generation using random bit generator(CTR_DRBG, HASH_DRBG, HMAC_DRBG, etc.)
- The random bit generator shall be implemented in compliance with domestic and foreign standards.
- It is possible to generate asymmetric key pairs (public keys/private keys) or symmetric keys using random bits generated by the random bit generator.

6.1.2.3. FCS_CKM.6 Timing and event of cryptographic key destruction

Component relationships

Hierarchical to No other components.

Dependencies [FDP_ITC.1 Import of user data without security attributes, or

FDP_ITC.2 Import of user data with security attributes, or

FCS_CKM.1 Cryptographic key generation, or

FCS_CKM.5 Cryptographic key derivation]

FCS_CKM.6.1 The TSF shall destroy [assignment: list of cryptographic keys (including

keying material)] when [selection: no longer needed, [assignment: other

circumstances for key or keying material destruction]].

FCS_CKM.6.2 The TSF shall destroy cryptographic keys and keying material specified by

FCS_CKM.6.1 in accordance with a specified cryptographic key destruction method [assignment: cryptographic key destruction method] that meets the

following: [assignment: *list of standards*].

44

응용 시 주의사항

1. Destruction of DB encryption-related cryptographic keys and critical security parameters

- o The TOE shall delete the used key encryption key(KEK).
- o When terminating execution, all cryptographic keys and critical security parameters loaded in the memory shall be deleted.
 - When destroying cryptographic keys and critical security parameters, a method of overwriting at least 3 times with 0 or 1 can be used.

2. Destruction of other cryptographic keys

- o The TOE shall securely destroy the cryptographic keys generated or used in the TOE.
 - \(\triangle \) When terminating execution of the TOE, \(\triangle \) When calling cryptographic key deletion function, \(\triangle \) When terminating cryptographic communication, etc., all cryptographic keys and information related to cryptographic key that have expired shall be destroyed.
 - When destroying cryptographic keys, a method of overwriting at least 3 times with values of 0 or 1 can be used.
 - For details, refer to the cryptographic key destruction method of the 'Encryption Key Management Guide' (Ministry of Science and ICT, 2014).

6.1.2.4. FCS_COP.1(1) Cryptographic operation (User data encryption)

Component relationships

Hierarchical to No other components.

Dependencies [FDP_ITC.1 Import of user data without security attributes, or

FDP_ITC.2 Import of user data with security attributes, or

FCS_CKM.1 Cryptographic key generation, or

FCS_CKM.5 Cryptographic key derivation]

FCS_CKM.6 Timing and event of cryptographic key destruction

FCS_COP.1.1

The TSF shall perform [assignment: list of cryptographic operations] in accordance with specified cryptographic algorithm [assignment: а cryptographic algorithm] and cryptographic key sizes [assignment: cryptographic key sizes] that meet the following: [assignment: list of standards].

Application notes

o The TOE shall perform encryption when authorized users store important information in the database.

- The database encryption/decryption function shall use the approved cryptographic algorithm of the validated cryptographic module of which security and implementation suitability have been confirmed through the Korea Cryptographic Module Validation Process(KCMVP), and the validated cryptographic module must run in the approved mode of operation.
- o The TOE shall use the cryptographic algorithm of the validated cryptographic module to perform cryptographic operations on the database.
 - The TOE must comply with the following when using the block cipher algorithm.
 - When using the ECB operation mode, it must be applied only to single blocks.
 - In CBC and CFB modes, the IV must satisfy unpredictability, and in OFB, CCM, and GCM modes, the IV must satisfy uniqueness. For this purpose, random IVs are generally used in CBC, CFB, OFB, CCM, and GCM modes.
 - In CTR mode, the counter value must satisfy uniqueness, and for this purpose, random values are used for more than half of the counter values.
 - When decryption is performed in CCM or GCM mode, the tag result value must be verified and then the plain text must be output.
 - Refer to the type of product to be equipped with a validated cryptographic module posted on the website of the National Cyber Security Center and list of validated cryptographic module.

6.1.2.5. FCS_COP.1(2) Cryptographic operation (TSF data encryption)

Component relationships

Hierarchical to No other components.

Dependencies [FDP_ITC.1 Import of user data without security attributes, or

FDP_ITC.2 Import of user data with security attributes, or

FCS_CKM.1 Cryptographic key generation, or

FCS_CKM.5 Cryptographic key derivation]

FCS_CKM.6 Timing and event of cryptographic key destruction

FCS_COP.1.1

The TSF shall perform [assignment: list of cryptographic operations] in accordance with а specified cryptographic algorithm [assignment: cryptographic *algorithm*] and cryptographic key sizes [assignment: cryptographic key sizes] that meet the following: [assignment: list of standards].

- o The TOE shall use the recommended cryptographic algorithm when transmitting and storing important information.
- The recommended cryptographic algorithm is a standard algorithm with a security strength of 112 bits or higher. Refer to the supporting document. Examples are as follows:

- · Hash Algorithm: SHA-224 or higher
- · Symmetric key Algorithm: Key length 128 bits or higher
- <u>Public key Algorithm: RSA 2048 or higher, DSA(2048, 224) or higher</u>
- <u>Digital signature Algorithm: RSA-PSS 2048 or higher, KCDSA(2048, 224) or higher, ECDSA/EC-KCDSA</u> (B-233, B-283, K-223, K-283, P-224, P-256)
- However, the use of TDES(including 2 keys and 3 keys) is not permitted.
- When using block cipher, ECB mode shall not be used if the plain text size is larger than the encryption block size.
- When using block cipher, fixed IV shall not be used in CFB or OFB mode.
- Domestic/foreign standard cryptographic algorithms shall be used, and the use of the national cryptographic algorithm is recommended.
- For details of cryptographic algorithm with a security strength of 112 bits or higher, refer to 'Guide to Cryptographic Algorithm and Key Length' (Ministry of Science and ICT, 2018), 'Software Cryptographic Module Validation Criteria' and 'NIST SP 800-131Ar2'.

6.1.2.6. FCS_RBG.1 Random bit generation (RBG)

Component relationships

Hierarchical to No other components.

Dependencies [FCS_RBG.2 Random bit generation (external seeding), or

FCS_RBG.3 Random bit generation (internal seeding – single source)]

FPT_FLS.1 Failure with preservation of secure state

FPT_TST.1 TSF self-testing

FCS_RBG.1.1 The TSF shall perform deterministic random bit generation services using

[assignment: DRBG algorithm] in accordance with [assignment: list of

standards] after initialization.

FCS_RBG.1.2 The TSF shall use a [selection: TSF entropy source [assignment: name of

entropy source], TSF interface for obtaining entropy] for initialization and

reseeding.

FCS_RBG.1.3 The TSF shall update the DRBG state by [selection: reseeding,

uninstantiating and re-instantiating] using a [selection: TSF entropy source [assignment: name of entropy source], TSF interface for obtaining entropy

[assignment: name of the interface]] in the following situations:

[selection:

- never;
- on demand;
- on the condition: [assignment: condition];
- after [assignment: time]]

in accordance with [assignment: list of standards].

Application notes

1. Random bit generation related to DB encryption

- o The TOE shall use the random bit generator of the validated cryptographic module when generating encryption key required for database encryption.
 - The entropy of the random bit generator SEED value shall be 2112 or higher.

2. Other random bit generation related to TSF data

- o Examples of secure cryptographic key generation methods are as follows:
 - Password-based key derivation(PKCS#5 v2.1(RFC 8018), NIST SP 800-132, etc.)
 - Key derivation with pre-shared keys(TTAK.KO-12.0272)
 - Key generation using random bit generator(CTR_DRBG, HASH_DRBG, HMAC_DRBG, etc.)
- o The random bit generator shall be implemented in compliance with domestic and foreign standards.
- o It is possible to generate asymmetric key pairs (public keys/private keys) or symmetric keys using random bits generated by the random bit generator.
- o User password used by the TOE for user identification and authentication shall be stored using a one-way encryption(Hash) to prevent decryption.
 - When performing a one-way encryption, it is necessary to add and apply a randomly generated value called salt to the password.
 - The salt value does not need to be confidential. It shall be generated using random bit generator and the size must be at least 48 bits.
 - The iteration count shall be applied as large as possible. (at least 1000 times)

6.1.3. User data protection (FDP)

6.1.3.1. FDP_UDE.1 User data encryption (Extended)

Component relationships

Hierarchical to No other components.

Dependencies FCS_COP.1 Cryptographic operation

FDP_UDE.1.1 The TSF shall provide a function that can encrypt/decrypt the user data to

the TOE user according to the specified [encryption/decryption method by

column, [assignment: List of other encryption/decryption methods]].

Application notes

o The TOE shall perform encryption when authorized users store important information in the

database.

- When authorized users store important information in the database, it is mandatory for the TOE to provide the encryption function for each column.
 - When requested by authorized users, the TOE shall provide the function to decrypt important information encrypted and stored in the database.
- The TOE may provide a one-way encryption method in addition to the encryption method for each database column.
- The database encryption/decryption function shall use the approved cryptographic algorithm of the validated cryptographic module of which security and implementation suitability have been confirmed through the Korea Cryptographic Module Validation Program(KCMVP), and the validated cryptographic module must run in the approved mode of operation.
- The encryption algorithm used, cryptographic key security, and cryptographic key storage method shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.

6.1.3.2. FDP_RIP.1 Subset residual information protection

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FDP_RIP.1.1 The TSF shall ensure that any previous information content of a resource is

made unavailable upon the <u>allocation of the resource to, deallocation of the</u>

<u>resource from</u> the following objects: [user data].

6.1.4. Identification and authentication (FIA)

6.1.4.1. FIA_AFL.1 Authentication failure handling

Component relationships

Hierarchical to No other components.

Dependencies FIA UAU.1 Timing of authentication

FIA_AFL.1.1 The TSF shall detect when [selection: [assignment: positive integer number],

an administrator configurable positive integer within [assignment: range of acceptable values]] unsuccessful authentication attempts occur related to

[assignment: list of authentication events].

FIA AFL.1.2 When the defined number of unsuccessful authentication attempts has been

met, the TSF shall [assignment: list of actions].

- o If user authentication fails consecutively as many times as the set number in the TOE, the identification and authentication functions shall be deactivated.
 - Examples of how to activate after deactivating the identification and authentication functions are as follows:
 - · Activation after a specified period of time after account lock-out
 - Provision of other identification and authentication means for activation after account lock-out
 - Additional identification and authentication means specified in FIA_UAU.1 may be provided. In case of authentication failure with additional <u>identification</u> and authentication means, it shall be included in the number of user authentication failures.
 - The number of consecutive authentication failures in which identification and authentication are deactivated shall be fixed or settable at a value of 5 or less.
 - When implementing to deactivate the authentication function for a certain period of time, the time required for re-activation shall be fixed or settable at a value of 5 minutes or more.
- o If administrator authentication fails consecutively as many times as the set number, the TOE shall notify the administrator through means that can be immediately checked.
 - Notification shall be made through at least one of alarm, text messaging, e-mail, etc.

6.1.4.2. FIA_IMA.1 TOE Internal mutual authentication (Extended)

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FIA_IMA.1.1 The TSF shall perform mutual authentication between [assignment: different

parts of TOE] using the [assignment: authentication protocol] that meets the

following [assignment: list of standards].

- o This SFR must be applied among the TOE components that are physically separated.
- o If the TOE components include the server and the agent that receives the security policy from it, the agent shall perform identification and authentication for the server.
 - Agents shall perform identification and authentication to confirm the legitimacy of the server.
 - One of the server IP address and domain name must be included in the server identification information, and additional identification information can be used.
 - The authentication method for the server includes a <u>certificate-based authentication method</u>, <u>etc.</u>

- When using a certificate, verification of the validity of the certificate(within 1 year of validity) shall be performed.

6.1.4.3. FIA SOS.1 Verification of secrets

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FIA_SOS.1.1 The TSF shall provide a mechanism to verify that secrets meet [assignment:

a defined quality metric].

Application notes

o If ID/password is the only means of user identification and authentication, the TOE shall meet the security criteria of <Password Security Criteria Type(1)> when registering and changing passwords.

<Password Security Criteria Type(1)>

Description	Contents	Remarks
	Secure the length of more than 9 digits	Mandatory
Compliance	Contains at least one number, uppercase	
Compliance	letter(english), lowercase letter(english), and	Mandatory
	special character each	
	Do not set the same password as the user	Mandatory
	account (ID)	Walladory
	Prohibition of consecutive repeated input of	Mandatory
	the same letter/number	Managery
Prohibition	Prohibit sequential input of consecutive letters	Mandatory
	or numbers on the keyboard	a.raatery
	Prohibition of reuse of the password used	
	immediately before	Implement either one of the
	Prohibition of reuse of the password used	two
	within the past 3 months	

o If ID/password input and additional identification and authentication functions are performed concurrently, the TOE shall meet the security criteria of <Password Security Criteria Type(2)> when registering and changing passwords.

<Password Security Criteria Type(2)>

Description	Contents	Remarks
Camanlianaa	Secure the length of more than 6 digits.	Mandatory
Compliance	Contains at least one number, uppercase	Optional

	letter(english), lowercase letter(english), and	
	special character each	
Prohibition	Do not set the same password as the user account (ID)	Mandatory
	Prohibition of consecutive repeated input of the same letter/number	Optional
	Prohibit sequential input of consecutive letters or numbers on the keyboard	Optional
	Prohibition of reuse of the password used immediately before	Optional
	Prohibition of reuse of the password used within the past 3 months	Optional

6.1.4.4. FIA_UAU.1 Timing of authentication

Component relationships

Hierarchical to No other components.

Dependencies FIA_UID.1 Timing of identification

FIA_UAU.1.1 The TSF shall allow [assignment: list of TSF mediated actions] on behalf of

the user to be performed before the user is authenticated.

FIA_UAU.1.2 The TSF shall require each user to be successfully authenticated before

allowing any other TSF-mediated actions on behalf of that user.

- o The TOE shall provide user account/password-based identification and authentication functions to verify the identity of the user.
 - Identification and authentication must be performed to confirm that the user is a legitimate user of the TOE.
 - If it is required to identify and authenticate users who exist in the agents or clients constituting the TOE, the identification value shall be a unique value that is not registered in duplicate.
 - When authenticating the user, the additional attributes of the registered agents or clients shall also be authenticated.
 - Additional attributes: IP address is mandatory, and at least one of <u>the MAC address</u>, <u>Serial Number</u>, <u>and information that can uniquely identify the agent itself</u> shall be additionally used.
- o In case of the TOE supports additional identification and authentication methods, for user identification and authentication, the TOE must provide additional identification and authentication functions on its own or by interacting with external IT entities in parallel with user account and password-based identification and authentication.

- In order to provide additional identification and authentication functions, <u>△2FA support</u> device complying with FIDO standards, △certificates, △one-time password generator(OTP), etc. can be used.
 - If it is supported in the TOE operating environment, '2FA support device complying with FIDO standards' is recommended.
- If additional identification and authentication functions are provided by the TOE, the functions can be provided by receiving the authentication results from the inside of the TOE or from interaction with the external IT entities.
 - If the TOE provides a certificate utilization method, certificate validation shall be performed.
 - The authentication information used by external IT entities to perform additional identification and authentication methods shall be securely managed by the external IT entities. If the TOE stores authentication information use to perform additional identification and authentication methods, the requirements of FPT_PST.1 shall be applied.
- o If the TOE authenticates external IT entities, the TOE shall authenticate the interacted external IT entities.

6.1.4.5. FIA_UAU.4 Single-use authentication mechanisms

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FIA_UAU.4.1 The TSF shall prevent reuse of authentication data related to [assignment:

identified authentication mechanism(s).

- o The TOE shall prevent reuse of user's authentication information(*using timestamp, encrypting session ID, etc.*)
 - It is mandatory to apply to authentication information to be used for user account/password-based identification and authentication specified in FIA_UAU.1.
 - If the TOE receives authentication information from the user to provide additional identification and authentication methods specified in FIA_UAU.1, it is mandatory to apply to the corresponding authentication information.
 - It can be prevented by encrypting the session ID or guaranteeing the uniqueness of the session ID(*including timestamp and random bit values, setting session expiration time, etc.*)
 - If the TOE detects an attempt to reuse authentication information that is prohibited from being reused, authentication shall fail and an audit record shall be generated for the authentication failure event.

6.1.4.6. FIA UAU.7 Protected authentication feedback

Component relationships

Hierarchical to No other components.

Dependencies FIA_UAU.1 Timing of authentication

FIA_UAU.7.1 The TSF shall provide only [assignment: list of feedback] to the user while

the authentication is in progress.

Application notes

o The TOE shall not display the contents when displaying the information used for authentication on the output device.

- It shall be applied when the authentication information specified in FIA_UAU.1 is displayed on the output device.
- The information used for authentication shall be output in the form of <u>no-display of input contents</u>, display of "*" instead of input characters, etc.
- When users log in, the authentication information shall not be exposed with plain text in the memory area.
- o In case of identification and authentication failures, the TOE shall not provide the feedback for the cause of failure (e.g. non-existent account(ID), password error, etc.).

6.1.4.7. FIA_UID.1 Timing of identification

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FIA_UID.1.1 The TSF shall allow [assignment: list of TSF-mediated actions] on behalf of

the user to be performed before the user is identified.

FIA_UID.1.2 The TSF shall require each user to be successfully identified before allowing

any other TSF-mediated actions on behalf of that user.

- o The TOE shall provide user account/password-based identification and authentication functions to verify the identity of the user.
 - Identification and authentication must be performed to confirm that the user is a legitimate user of the TOE.
- o In case of the TOE supports additional identification and authentication methods, for user identification and authentication, the TOE must provide additional identification and authentication functions on its own or by interacting with external IT entities in parallel

with user account and password-based identification and authentication.

o If the TOE authenticates external IT entities, the TOE shall authenticate the interacted external IT entities.

6.1.5. Security management (FMT)

6.1.5.1. FMT_MOF.1 Management of security functions behaviour

Component relationships

Hierarchical to No other components.

Dependencies FMT_SMF.1 Specification of Management Functions

FMT_SMR.1 Security roles

FMT_MOF.1.1 The TSF shall restrict the ability to *conduct management actions* of the

functions [assignment: list of functions] to [assignment: the authorized

identified roles].

- o The TOE shall provide the authorized administrator with the security management functions to set and manage security functions, security policies, important data, etc.
 - The security management functions include the followings:
 - A function to add, delete or change conditions or rules that can determine the behavior of the security function.
 - A function to add, remove or change the actions to be performed by the TOE in accordance with the conditions or rules.
 - A function to select or change TOE settings
 - The security management functions to be implemented by the TOE are shown in [Table 7] below.

Sub-category	Security management	Remarks
Identification and authentication	User registration, deletion and change, grant	Not applicable, if the
		user registered in the
	privileges	TOE is the only one.
	Setting user's password combination/length policy	Mandatory when
	Setting user's password combination/length policy	providing the function
	Setting the allowed number of user's	Mandatory when
	authentication failures	providing the function
	Setting the response methods to user's	Mandatory when
	authentication failures	providing the function
	Setting the time from deactivation of user's	Mandatory when

	authentication function to re-activation	providing the function
	Setting the authentication information of external	Mandatory when
	IT entities that is authenticated by the TOE.	providing the function
Security management	IP registration, deletion and change of the	
	management terminals	
	Backup of important data, configuration	Mandatory when
	information, audit records, etc.	providing the function
	Recovery of important data, configuration	Mandatory when
	information, audit records, etc.	providing the function
	Enabling and disabling management access service	Mandatory when
		providing the function
6	Agent inquiry - status, version, and applied	Mandatory when
Security	security policy	including agents
management	Agent security policy management – policy	Mandatory when
	settings, policy transmission	including agents
	Setting the authentication information for access	Mandatory when
	to external IT entities	providing the function
	Performing self-test for TOE's security function by	Mandatory when
	administrator's request	providing the function
	Setting response actions when self-test fails	Mandatory when
0.16	<u> </u>	providing the function
Self-protection	Performing an integrity verification of the TOE	
	setting values and the TOE itself by the	
	administrator's request	
	Setting response actions when integrity verification	Mandatory when
	fails	providing the function
	Manual validation of update files by	Mandatory when
Update	administrator	providing the function
protection	Manual recovery of failed installation of update	Mandatory when
process.	files by administrator	providing the function
	Inquiry of TOE version information	
	User session locking time, user session timeout	,
	time setting	providing the function
Safe session	(In case session locking) Administrator or	
management	individual user authentication when unlocking	
	sessions	
	Setting the number of concurrent user access	Mandatory when
	sessions	providing the function
	Inquiry of audit records	-
Audit records		Mandatory when
	Response-related settings for loss of audit records	providing the function
		providing the function

[Table 7] Security management functions to be implemented by TOE

- o The TOE shall provide enable/disable functions for all management access.
- o If an agent is included in the TOE, the TOE shall provide the ability to centrally manage the security policy and force the agent to apply the server's security policy.

- If an agent is included in the TOE, the server shall centrally manage the policy and be able to enforce the server's security policy regardless of whether the agent itself has a security management function.
- If the agent itself has a security management function, the server shall be able to enable/disable the agent's configuration function.
- o The communication service that does not support cryptographic communication channels shall be able to be disabled.
- o During TOE operation, it shall support the self-test execution periodically or by administrator's request.
- o To ensure correct operation, the TOE shall perform the response function implemented on its own or the response function set by the administrator when the self-test fails.
- o The TOE shall provide the administrator with the function to perform integrity verification.
- o The TOE shall perform the response function implemented on its own or the response function set by the administrator when the integrity verification fails.
- o If the TOE provides online update or manual update function, only the update files that have succeeded in validation shall be installed or applied.
- o If the TOE does not provide the function of automatically maintaining the existing version when the update installation fails, manual recovery by the administrator shall be supported.
- o Locked sessions shall be unlocked by the administrator or through the user authentication function for each session, after the locking time has elapsed.
- o Additionally, the TOE may provide a function to send audit records to external log servers by administrator.
 - <u>If syslog is supported, it shall support cryptographic transmission through syslog over TLS(RFC 5424), or syslog over DTLS(RFC 6012).</u>
 - The cryptographic algorithm used, cryptographic key security, and cryptographic key storage method shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.
- o If an agent or client provides a management function, the agent or client shall provide a security management function that allows users to set and manage their own security functions, security policies, and important data, etc.
 - If the TOE component includes a server and an agent, the agent shall be able to enforce the security policy transmitted by the server as the agent's settings.
 - A user guidance shall be submitted that identifies and describes all security management functions provided by the agent or client.
- o TOE agents or clients shall verify the integrity periodically or upon the authorized administrator's request, and provide the administrator with the result notification function.

6.1.5.2. FMT_MTD.1 Management of TSF data

Component relationships

Hierarchical to No other components.

Dependencies FMT_SMF.1 Specification of Management Functions

FMT_SMR.1 Security roles

FMT_MTD.1.1 The TSF shall restrict the ability to *manage* [assignment: *list of TSF data*] to

[assignment: the authorized identified roles].

Application notes

o The TOE shall provide the authorized administrator with the security management functions to set and manage security functions, security policies, important data, etc.

- The security management functions include the followings:
 - A function to add, delete or change conditions or rules that can determine the operation of the security function.
 - A function to add, remove or change the actions to be performed by the TOE in accordance with the conditions or rules.
 - A function to select or change TOE settings
- The security management functions to be implemented by the TOE are shown in [Table 7].
- o The administrator shall be able to grant privileges each user or each group.
- o The user account(ID) is a unique value and shall not be registered in duplicate.
- o The number of consecutive authentication failures in which identification and authentication are deactivated shall be fixed or settable at a value of 5 or less.
- o When implementing to deactivate the authentication function for a certain period of time, the time required for re-activation shall be fixed or settable at a value of 5 minutes or more.
- o If ID/password is the only means of user identification and authentication, the TOE shall meet the security criteria, <Password Security Criteria Type(1)> of FIA_SOS.1 when registering and changing passwords.
- o If ID/password input and additional identification and authentication functions are performed concurrently, the TOE shall meet the security criteria, <Password Security Criteria Type(2)> of FIA_SOS.1 when registering and changing passwords.
- o If authentication information necessary for external IT entity authentication is required to be set, the TOE shall provide the function to set the information necessary for external IT entity authentication.
 - The application target may be a <u>pre-shared key for the authentication server connection</u>, <u>an SNMP authentication/encryption password</u>, <u>etc</u>.
 - When passwords are used for external IT entity authentication, the security criteria,

- <Password Security Criteria Type(1)> or <Password Security Criteria Type(2)>of FIA_SOS.1
 shall be complied with.
- o The TOE shall provide a function to limit the IP of the accessible management terminals.
 - The IP address of the management terminals shall be able to be registered, deleted or changed.
 - Management terminals that can be accessed by administrators who have only read permission instead of for management purpose (e.g., *monitoring administrators, etc.*) can be additionally registered and operated.
 - Only one single host IP can be added per time for accessible management terminals.
 - A method of specifying an IP address range, such as 192.168.10.2~253, or registration using 0.0.0.0, 192.168.10.*, any, etc. which means the the entire network range is not allowed.
- o When providing a function that requires a password to access internal components of the TOE or external IT entities, the TOE shall provide the default password change function used to access internal components or external IT entities.
 - Examples of default passwords include DBMS passwords and web server/WAS server passwords.
 - If the TOE stores the default password to access the DBMS, the TOE shall provide a function to change the default password.
 - If the TOE stores the default password to access the WEB Server•WAS Server, the TOE shall provide a function to change the default password.
 - Depending on whether additional identification and authentication functions are concurrently used when generating a password, the security criteria, <Password Security Criteria Type(1)> or <Password Security Criteria Type(2)> of FIA_SOS.1 shall be complied with.
 - If a default account(ID) exists in the TOE to access DBMS/Web Server/WAS Server, a function to change it may be provided.
- o If an external IT entity interacted with the TOE requests authentication information for TOE authentication, the TOE shall provide a function to set the authentication information required to be authenticated by the external IT entity.
 - Examples of authentication information include the password used to authenticate the TOE in the SMTP server.
 - It is recommended that passwords should comply with the security criteria, <Password Security Criteria Type (2)> of FIA_SOS.1.
 - However, even the characters included in the password security criteria may not include characters that are not permitted to be entered by the interacted external IT entity.
- o If the TOE includes agents, the TOE shall provide a function to inquire information about the agent.
 - The essential inquiry information for the agent is as follows.
 - Agent version, security policy applied to the agent, agent operation status (enabled/disabled),

agent integrity verification result (success/failure)

- Additional information about the agent is as follows.
 - Additional agent attributes, others (operating system information of the managed system where the agent is installed, IP information, other information, etc.), etc.
- o If the TOE includes agents, the TOE shall centrally manage the security policy and provide a function to enforce the server's security policy to the agent.
 - If the TOE includes agents, the server must centrally manage the policy and shall be able to enforce the server's security policy regardless of the agent's own security management function.
- o The TOE shall provide an interface that allows only authorized administrators to access the TOE settings, and other persons than authorized administrators shall not be able to access the TOE settings.
 - Access means operations such as read, change, and delete, etc.
- o When providing the function to backup the TOE settings in the form of external file, an encryption function shall be provided.
- o For encryption, the cryptographic algorithm used, cryptographic key security, and cryptographic key storage method shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.
- o The TOE shall provide a function for the administrator to check the contents and results of integrity verification.
 - The contents and results of integrity verification shall be confirmed through <u>screen</u> display, audit records.
- o The TOE shall provide a function for users to check 'the unique identification information of the TOE'.
 - The TOE identification information must be unique, can be checked by the user through the interface, and cannot be modified or changed. It shall include the following:
 - TOE name, TOE version, TOE release or build number
 - If the TOE includes multiple components that are physically separated, the identification information of each component shall be unique, can be checked, and cannot be modified or changed by users. It shall include the following:
 - The name and version of the TOE including the component, the component name, the component version, and the component release or build number
 - A version management system shall be applied to check the patch of the TOE/components and whether functions are improved.
 - (e.g., In case of patch and function improvement, a system for changing the major version, minor version, release number, and build number for each case is established to track the reason for the change of TOE/components with version information)
 - In case of hardware appliance, users shall be able to view the unique identification

information of the firmware in addition to TOE identification information through TOE interface.

- o A certain amount of time, which is the cumulative amount of time after connection that triggers user session locking or session time-out, the administrator can fix the accumulated amount of time from a value of 10 minutes or less, or set it in proportion to the number of authentication failures.
- o Audit records shall be inquired only through the security function provided by the TOE.
- o The relevant user interface(UI) and CLI commands shall not be provided so that even an authorized administrator cannot delete or change audit records.
- o Examples of conditions to notify administrators related to audit record loss response are as follows.
 - 90% or more of the setup disk capacity, 100 MB or more, etc.
- o If an agent or client provides a management function, the agent or client shall provide a security management function that allows users to set and manage their own security functions, security policies, and important data, etc.
 - If the TOE component includes a server and an agent, the agent shall be able to enforce the security policy transmitted by the server as the agent's settings.
 - A user guidance shall be submitted that identifies and describes all security management functions provided by the agent or client.

6.1.5.3. FMT_PWD.1 Management of ID and password (Extended)

Component relationships

Hierarchical to No other components.

Dependencies FMT_SMF.1 Specification of Management Functions

FMT_SMR.1 Security roles

FMT_PWD.1.1 The TSF shall restrict the ability to manage the password of [assignment: list of functions] to [the authorized administrator].

- 1. [assignment: password combination rules and/or length]
- 2. [assignment: other management such as management of special characters unusable for password, etc.]
- FMT_PWD.1.2 The TSF shall restrict the ability to manage the ID of [assignment: *list of functions*] to [the authorized administrator].
 - 1. [assignment: ID combination rules and/or length]
 - 2. [assignment: other management such as management of special characters unusable for ID, etc.]
- FMT_PWD.1.3 The TSF shall provide the capability for [selection, choose one of: *setting ID* and password when installing, setting password when installing, changing the ID and password when the authorized administrator accesses for the

first time, changing the password when the authorized administrator accesses for the first time.

Application notes

- o The user account(ID) is a unique value and shall not be registered in duplicate.
- o The TOE shall provide a function to forcibly change/generate the administrator default password during the initial access (management access, local access) to the TOE.
 - If there is a default password, the function to change the default password shall be provided during the initial access to the TOE, and then management and local access to the TOE shall be possible.
 - If there is no default password, a new password shall be created, and then management and local access to the TOE shall be possible.
 - Passwords shall comply with the security criteria, <Password Security Criteria Type (1)> or <Password Security Criteria Type (2)> of FIA_SOS.1.
 - If there is no default account(ID), a new account(ID) shall be created, and then management and local access to the TOE shall be possible.

6.1.5.4. FMT_SMF.1 Specification of Management Functions

Component relationships

Hierarchical to No other components

Dependencies No dependencies.

FMT_SMF.1.1 The TSF shall be capable of performing the following management

functions: [assignment: list of management functions to be provided by the

TSF].

6.1.5.5. FMT_SMR.1 Security roles

Component relationships

Hierarchical to No other components.

Dependencies FIA_UID.1 Timing of identification

FMT_SMR.1.1 The TSF shall maintain the roles [assignment: the authorized identified

roles].

FMT_SMR.1.2 TSF shall be able to associate users and their roles **defined in FMT_SMR.1.1.**

6.1.6. Protection of the TSF (FPT)

6.1.6.1. FPT FLS.1 Failure with preservation of secure state

Component relationships

Hierarchical to No other components

Dependencies No dependencies.

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of failures

occur: [assignment: list of types of failures in the TSF].

6.1.6.2. FPT_ITT.1 Basic internal TSF data transfer protection

Component relationships

Hierarchical to No other components

Dependencies No dependencies.

FPT_ITT.1.1 The TSF shall protect TSF data from <u>disclosure, modification</u> when it is

transmitted between separate parts of the TOE.

Application notes

o The TOE shall transmit using an encrypted channel to protect data transmitted among TOE components (e.g., <u>security policies, control commands, audit records, etc.</u>)

- For secure cryptographic communication, confidentiality and integrity shall be provided using standard protocols.
 - Secure cryptographic communication protocols include <u>HTTPS (implemented using TLS),</u> <u>TLS (TLS 1.2-RFC5246 or higher), SSH (SSH V2-RFC 4251, 4254), etc.</u>
- Use of its own protocol is not allowed.
- The cryptographic algorithm used, cryptographic key security, and cryptographic key storage method shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.

6.1.6.3. FPT_PST.1 Basic protection of stored TSF data (Extended)

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FPT_PST.1.1 The TSF shall protect [assignment: TSF data] stored in containers controlled

by the TSF from the unauthorized disclosure.

Application notes

1. Protection when storing TSF data (important information)

- o The TOE shall store important information in a secure way when storing it inside the TOE.
 - At least when the TOE stores the following important information, it shall be encrypted and

stored.

- Password used by the TOE for user identification and authentication
- Authentication information used by the TOE for additional identification and authentication
- Data Encryption Key(DEK)
- The data encryption key(DEK) shall be encrypted and stored using the key encryption key(KEK).
- Requirements related to generation and storage of key encryption key(KEK) shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.
- When the TOE stores the following information, it must be stored using *encryption, access* control, etc.
 - Information used for mutual authentication when the TOE and external IT entities are interacted
 - DBMS/web server/WAS server's administrator password required for the TOE to access DBMS/web server/WAS server that exist inside or outside the TOE.
 - Cryptographic key (pre-shared key, symmetric key, private key)
- The user password used by the TOE for user identification and authentication shall be stored using one-way encryption(hash) to prevent decryption.
 - When performing one-way encryption, it is necessary to add and apply a randomly generated value called salt to the password.
 - The salt value does not need to be confidential. It shall be generated using a random bit generator and the size must be at least 48 bits.
 - The iteration count shall be applied as large as possible (at least 1000 times).
- DBMS/Web server/WAS server's administrator password, etc. required for TOE operation can be stored after being encrypted by applying the public key/symmetric key encryption algorithm.
- Cryptographic key means pre-shared key, symmetric key, private key, etc., and covers all keys used for TOE management access/local access, and interaction settings among TOE components.
- Passwords and cryptographic keys included in the minimum important information that shall be encrypted shall not be stored in the TOE by hard-coding.
- The cryptographic algorithm used, encryption key security, and encryption key storage method shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT PST.1.

2. Protection when storing TSF data (setting values, audit records)

o The TOE shall provide a function to protect the stored TOE setting values (*security policies, environment setting parameters, etc.*) so that only authorized administrators can access.

- For hardware appliance-type TOE, the TOE settings stored inside shall be protected, and for software-type TOE, the TOE settings stored in the store controlled by the TOE after installation.
- The TOE shall provide an interface that allows only authorized administrators to access TOE settings, and other persons than authorized administrators shall not be able to access TOE settings
 - Access means operations such as read, change, delete, etc.
- When providing the function to backup the TOE settings in the form of external files, an encryption function shall be provided.
- During encryption, the cryptographic algorithm used, cryptographic key security, and cryptographic key storage method shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.
- o If WAS(*Tomcat, Jesus, etc.*) is included in the TOE package, the TOE shall implement not to include important information in the WAS log.
 - Important information such as passwords and encryption keys shall not be left in plain text in the WAS log.
- o The TOE may safely encrypt and store audit records when they are stored inside the TOE.
 - The cryptographic algorithm used, cryptographic key security, and cryptographic key storage method shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.

3. Protection when storing cryptographic key

- o The TOE shall store the cryptographic key in a secure way.
- Data encryption key(DEK) can be encrypted and stored by using key encryption key(KEK).
- Key Encryption Key(KEK) can be generated through multiple stages of key chain, among which the final key encryption key(KEK) can be encrypted and stored using the key encryption key(KEK) of the previous stage.
- The key encryption key(KEK) except the final key encryption key(KEK) in the key chain cannot be stored.
- When the cryptographic key is stored outside the TOE, it is recommended to use storage media that have been verified for safety such as smart cards, security USBs, and security tokens(HSM).
 - It is recommended to use a product that has obtained a security function test report or a domestic/foreign CC certificate for the storage media.
- Hard-coding and storing the encryption key in the TOE are not permitted.
- As shown in the [Table 8] below, the sponsors shall identify all cryptographic keys used for storage and transmission in the TOE, and prove security by submitting a list and explanatory materials for key storage and destruction methods.

Cryptographic key type	How to store and destroy keys			
	- Type: RSA Private Key			
	- Generator: Generated by TOE			
TLS private key	- Storage/Protection: Store in the TOE/Block unauthorized access to TOE storage area			
	- Destruction: Overwrite 3 times with 0 and 1 when executing key destruction command			
	- Type: ARIA Key - Generator: Generated by TOE			
TLS session encryption key	- Storage/Protection: Store only in memory(RAM)			
	- Destruction: Overwrite 3 times with 0 and 1 when at the end of the session			
	- Type: HMAC Key			
TLS session integrity	- Generator: Generated by TOE			
verification key	- Storage/Protection: Store only in memory(RAM)			
	- Destruction: Overwrite 3 times with 0 and 1 when at the			
	end of the session			

[Table 8] How to store and destroy cryptographic keys

- When the TOE stores cryptographic keys (pre-shared key, symmetric key, private key, etc.) used for local/administrative access for TOE management and for interacted setting with separate equipment, it shall be protected and stored in a way such as *encryption, access control, etc.*

4. Protection when storing agent or client or management console TSF data (important information)

- When the TOE agent or client stores important information in the file system or registry, the agent or client stores important information in the file system or registry, it shall be encrypted and stored.
 - At least when the TOE stores the following important information, it shall be encrypted and stored.
 - · User password
 - Cryptographic key (pre-shared key, symmetric key, private key)
 - User password includes agent deletion key, and password shall be stored using one-way encryption(hash) not to be generally decrypted.
 - When performing one-way encryption, it is necessary to add a randomly generated salt to the password.

- The salt value does not need to be confidential. It shall be generated using a random bit generator and it is the size of at least 48 bits.
- The iteration count shall be applied as large as possible. (at least 1000 times)
- Cryptographic key means pre-shared key, symmetric key, private key, etc., and covers all keys used for TOE management access/local access, and interacting settings among TOE components.
- Passwords and cryptographic keys included in the minimum important information that shall be encrypted shall not be stored in the TOE by hard-coding.
- The cryptographic algorithm used, cryptographic key security, and cryptographic key storage method shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.
- Even if encryption is provided, it is recommended to protect in a way to additional file hiding, access control, etc.

5. Protection when storing agent or or management console client TSF data (setting values, audit data)

- o When storing TOE settings and audit data in the file system or registry, a function to protect against unauthorized access may be provided.
 - The relevant user interface(UI) and CLI commands shall not be provided to prevent deletion or modification of audit data even by agent users.
 - Even agent users shall not be able to access the stored TOE settings.
 - Access means operations such as read, change, and delete.
 - If the TOE security function cannot be fully implemented, it can be supported to protect the TOE settings storage in the TOE operating environment.
 - When providing the function to backup the TOE settings in the form of external file, an encryption function shall be provided.

6. Protection when storing TSF data related to DB encryption (cryptographic key, critical security parameters)

- o When the TOE stores the encryption key or critical security parameters, it shall be encrypted with the key encryption key(KEK) through the encryption algorithm of the validated cryptographic module to store safely.
 - The stored encryption key or critical security parameters shall be stored by using the key encryption key(KEK) generated in accordance with the FCS_CKM.1(1) requirements or FCS_CKM.5 'document encryption-related cryptographic key generation'.

6.1.6.4. FPT_TST.1 TSF testing

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FPT_TST.1.1 The TSF shall run a suite of the following self-tests [selection: during initial

start-up, periodically during normal operation, at the request of the authorized **administrator**, at the conditions [assignment: conditions under which self-test should occur]] to demonstrate the correct operation of [selection: [assignment: parts of TSF], the TSF]: [assignment: list of self-tests

run by the TSF].

FPT TST.1.2 The TSF shall provide authorized **administrators** with the capability to verify

the integrity of [selection: [assignment: parts of TSF data], TSF data].

FPT_TST.1.3 The TSF shall provide authorized **administrators** with the capability to verify

the integrity of [selection: [assignment: parts of TSF], TSF].

Application notes

1. TOE server self-test, response function, and audit record generation

- o The TOE shall perform self-test during initial start-up(or execution)/operation periodically or at the request of the administrator.
 - When initial start-up(or execution) the TOE, it is mandatory to perform self-test, and during operation, it shall support the perform self-test periodically or at the request of the administrator.
 - The self-test target means the main process of the TOE, and shall check whether the process is running normally.
 - The target of self-test can be selected by the sponsors, but if the entity's abnormal state(<u>e.g., error, stop, etc.</u>) affects the security function of the TOE, the corresponding entity shall be included as the target of self-test.
 - The history of self-testing shall be confirmed through screen output, audit records.
 - The hardware appliance-type TOE shall satisfy the following requirements.
 - A self-test shall be performed to detect errors in hardware(<u>e.g., memory, flash, NIC, etc.</u>) and software(<u>e.g., process, etc.</u>) included in the scope of the TOE at the start-up and during operation of the TOE.
 - If physically separated TOE components exist, self-test shall be performed by selecting the targets to include all components.
 - The sponsors shall describe the self-test function in detail in the submission document.

- o If the TOE self-test result is a failure, it shall perform the response function.
 - The TOE shall perform the implemented response function or the response function set by the administrator to ensure correct operation.
 - Audit records shall be generated for self-test results.
 - Examples of response functions performed when the self-test result is a failure are as follows.
 - Termination of program execution, warning message screen display, restart process, etc.
 - A security management function may be provided for the administrator to set the response function.

2. TOE server integrity verification, response function, and audit record generation

- o The TOE shall provide a function to verify the integrity of itself and its setting values.
 - Integrity verification covers the TOE setting values(*configuration files, etc.*) and the TOE itself(*processes, libraries, executable files, etc.*).
 - Integrity verification shall be performed when the TOE is initial executed(or start-up), and periodic integrity verification can be performed additionally.
 - The target of integrity verification can be selected by the sponsor, but if the entity's abnormal state(e.g., *error, stop, etc.*) affects the security function of the TOE, the corresponding entity shall be included as the target of integrity verification.
 - If physically separated TOE components exist, integrity verification shall be performed by selecting the targets to include all components.
 - A function for the administrator to perform integrity verification shall be provided.
 - The cryptographic algorithm used, cryptographic key security, and cryptographic key storage method shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.
- o If the operating system kernel or kernel level module is included in the scope of the TOE, the TOE shall provide a function to verify the integrity of the operating system kernel or kernel level module.
 - When verifying integrity by hash value comparison method, the cryptographic algorithm used, cryptographic key security, and cryptographic key storage method shall shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.
- o The TOE shall provide a function for the administrator to check the contents and results of the integrity verification.
 - The contents and results of the integrity verification shall be checked through <u>screen display</u>, <u>audit records</u>.
- o The TOE shall perform response function if integrity verification fails.

- The TOE shall perform its own implemented response function or the response function set by the administrator.
- Audit records shall be generated for integrity verification results.
- Examples of response functions performed when the integrity verification result is a failure are as follows.
 - Termination of program execution, warning message screen display, etc.
- A security management function may be provided for the administrator to set the response function.

3. TOE agents, clients, management consoles integrity verification, response function, and audit record generation

- o The agent or client shall provide the function to verify the integrity of the TOE setting values and its own at the initialization phase and periodically or at the request of authorized administrators.
 - Integrity verification covers agent or client setting values(*policies, environment settings, etc.*) and the TOE itself (*executable files, filter drivers, etc.*).
 - In the case of a TOE running on a Windows® operating system, the modification shall be detected during normal booting of the operating system, if integrity is compromised in the safe mode of the operating system.
 - In the case that integrity verification is performed periodically or at the request of authorized administrators, △when an abnormality occurs in the integrity verification result, △the integrity verification result by the administrator shall be notified to the administrator.
 - Audit records shall be generated for integrity verification results.
 - Cryptographic-related parts shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.
- The agent or client shall provide a function to can recover modified information(<u>setting values</u>, <u>executable files</u>, <u>filter drivers</u>, <u>etc.</u>).
 - 'Modified information' shall identify and include all files that affect the normal operation and of security functions of the TOE.
 - 'Agent Type1' shall provide an automatic recovery function, and △Agent Type2 △Agent Type 3 and △Client Type may provide a manual recovery function.
- o In the case of an agent or client installed on the endpoint in Windows® environment, the agent or client shall provide an integrity verification function for the server/update server address.
- o If there are two or more servers or update servers on the file transfer path, the receiving server shall perform integrity verification for the address of the sending server.

6.1.7. TOE access (FTA)

6.1.7.1. FTA_MCS.2 Per user attribute limitation on multiple concurrent sessions

Component relationships

Hierarchical to FTA_MCS.1 Basic limitation on multiple concurrent sessions

Dependencies FIA_UID.1 Timing of identification

FTA_MCS.2.1 The TSF shall restrict the maximum number of concurrent sessions belong

to the same user according to the rules [limiting the maximum number of concurrent sessions to 1 for users who have the same privilege and the same user, [assignment: : rules for the number of maximum concurrent

sessions {determined by the ST author}]].

FTA_MCS.2.2 The TSF shall enforce, by default, a limit of [1] sessions per user.

Application notes

o The TOE shall not allow duplicate access to the TOE with the same user account or the same privilege.

- If a user logs in with the same account on another terminal after logging in, it is required to block a new access or terminate the previous access.
- Duplicate logins with the same privilege shall not be allowed.
- An audit record should be generated when duplicate access is blocked.

6.1.7.2. FTA_TSE.1(1) TOE session establishment

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FTA_TSE.1.1 The TSF shall be able to deny the administrator's management access

session establishment based on [access IP, [selection: [assignment: other

attributes], none]].

- o The TOE shall provide a function to restrict the IP of the accessible management terminals.
 - It shall be possible to register, delete, and change the IP address of the management terminals.
 - Management terminals accessible to administrators who only have read access instead of for management purposes(e.g., <u>monitoring administrators, etc.</u>) can be additionally registered for operation.
 - The IP of accessible management terminals can only be added one by one per single host.

CC:2022 R1

- It is not allowed to register by designating an IP address range such as $192.168.10.2\sim253$, or by using 0.0.0.0, $192.168.10.^*$, any, etc. which means the entire network range.

6.2. Security functional requirement (Conditionally mandatory SFR)

'Conditionally mandatory SFRs' in this PP are as follows. 'Conditionally mandatory SFRs' mandatorily require to be included in the ST, if they meet 'SFR additional conditions' in the table below.

Functional class	Security fur	nctional components	SFR additional conditions	Remark
	FAU_STG.2	Protected audit data storage	In case of the TOE server stores audit records in local storage	
FAU	FAU_STG.4	Action in case of possible audit data loss	In case of the TOE server stores audit records in local storage	
	FAU_STG.5	Prevention of audit data loss	In case of the TOE server stores audit records in local storage	
	FCS_CKM.5	Cryptographic key derivation	In case the TOE provides a cryptographic key derivation function (e.g., KEK generation using a password-based key derivation standard)	
	FCS_RBG.2	Random bit generation (external seeding)	In case a seed value is provided to DRBG by an external entropy source when generating random bits in FCS_RBG.1	
	FCS_RBG.3	Random bit generation (internal seeding – single source)	In case a seed value is provided to DRBG using a single entropy source by TSF when generating random bits in FCS_RBG.1	
	FCS_RBG.4	Random bit generation (internal seeding – multiple sources)	In case a seed value is provided to DRBG using multiple entropy sources by TSF when generating random bits in FCS_RBG.1	
	FCS_RBG.5	Random bit generation (combining entropy sources)	In case a seed value is provided to DRBG with combining internal external entropy sources by TSF when generating random bits in FCS_RBG.1	
FIA	FIA_UAU.5	Multiple authentication mechanisms	In case of the TOE server supports additional identification and authentication functions by itself in addition to the ID/password-based authentication method	

Functional class	Security fun	ctional components	SFR additional conditions	Remark
FPT	FPT_LEE.1	Linkable external entities - authentication (Extended)	In case the TOE server supports additional identification and authentication functions by interacting with external IT entities in addition to the ID/password-based authentication method	
	FPT_RCV.1	Manual recovery	In case the TOE components include agents or clients	
	FPT_RCV.2	Automated recovery	In case the TOE server update function is provided	
	FPT_TUD.1	TSF security patch update (Extended)	In case the TOE update function is provided	
	FTA_SSL.1	TSF-initiated session locking	In case the TOE provides session locking function	One of the two
FTA_SSL.3		TSF-initiated termination	In case the TOE provides session termination function	must be implement ed
	FTA_TSE.1(2)	TOE session establishment	In case it is necessary to identify and authenticate users existing in the agent, management console, or client constituting the TOE	
FTP	FTP_ITC.1	Inter-TSF trusted channel	In case the interaction with external IT entities is supported In case the audit records are transmitted and stored to external IT entities in real time In case of providing the online update function through the developer update server.	
	FTP_TRP.1	Trusted path	In case authorized administrators and end users directly access the TOE management server through web browsers or terminal access programs, etc.	

[Table 9] Conditionally mandatory SFRs

6.2.1. Security audit (FAU)

6.2.1.1. FAU_STG.2 Protected audit data storage

Component relationships

Hierarchical to No other components

Dependencies FAU_GEN.1 Audit data generation

FAU_STG.2.1 The TSF shall protect the stored audit data in the audit trail from

unauthorized deletion.

FAU_STG.2.2 The TSF shall be able to prevent unauthorised modifications to the stored

audit data in the audit trail.

Application notes

o The TOE shall protect the audit records from being deleted or changed.

- A function shall be implemented to store audit records in a local storage or to transmit and store audit records to an external IT entity in real time.
- Relevant user interface(UI) and CLI commands shall not be provided so that even authorized administrators cannot delete or change audit records.
- Unauthorized person's access shall be controlled to protect the stored audit records.
- If the TOE security function cannot be fully implemented, the TOE operational environment can support the protected audit trail storage.
 - Example: When audit records are stored in the DBMS installed on the same operating system as the TOE, the DBMS' identification and authentication functions can be used to protect deletion or modification by unauthorized users.
- If audit records are stored in the log server outside the TOE, cryptographic communication shall be performed.
 - If syslog is supported, cryptographic transmission shall be supported through <u>syslog</u> over DTLS(RFC 5424), syslog over DTLS(RFC 6012), etc.

6.2.1.2. FAU_STG.4 Action in case of possible audit data loss

Component relationships

Hierarchical to No other components

Dependencies FAU_STG.2 Protected audit data storage

FAU_STG.4.1 The TSF shall [Notification to the authorized administrator, [assignment:

actions to be taken in case of possible audit storage failure]] if the audit

data storage exceeds [assignment: pre-defined limit].

- o In case of the size of the audit record reaches the predefined capacity, the TOE shall take response actions such as *notifying the administrator*.
 - A function shall be implemented to store audit records in the local storage or to transmit and store audit records to an external IT entity in real time.
 - A function to notify the administrator shall be provided. Examples of the function are as

follows.

- Screen alarm, sending email to the administrator, etc.
- Examples of conditions for notifying the administrator in response to audit record loss are as follows.
 - 90% or more of the setup disk capacity, 100MB or more, etc.
- In addition, a function for the administrator to send audit records to an external log server may be provided.
 - If syslog is supported, cryptographic transmission shall be supported through <u>syslog over</u> DTLS(RFC 5424), syslog over DTLS(RFC 6012), etc.
 - The cryptographic algorithm used, cryptographic key security, and cryptographic key storage method shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.

6.2.1.3. FAU_STG.5 Prevention of audit data loss

Component relationships

Hierarchical to FAU_STG.4 Action in case of possible audit data loss

Dependencies FAU_STG.2 Protected audit data storage

FAU_STG.5.1 The TSF shall [selection: ignore audited events, "prevent audited events,

except those taken by the authorized administrator with special rights", overwrite the oldest stored audit records], [assignment: other actions to be taken in case of audit storage failure and conditions for the actions] if the

audit data storage is full.

Application notes

- o In case of the audit record storage capacity is full, the TOE shall respond to failure to save in an appropriate way.
 - A function shall be implemented to store audit records in a local storage or to transmit and store audit records to an external IT entity in real time.
 - Examples of response functions in case of failure to save are as follows.
 - Overwriting the oldest audit records, save audit records compression, etc.

6.2.2. Cryptographic support(FCS)

6.2.2.1. FCS_CKM.5 Cryptographic key derivation

Component relationships

Hierarchical to No other components

Dependencies [FCS_CKM.2 Cryptographic key distribution or

FCS_COP.1 Cryptographic operation]

FCS_CKM.6 Timing and event of cryptographic key destruction

FCS_CKM.5.1

The TSF shall derive cryptographic keys [assignment: *key type*] from [assignment: *input parameters*] in accordance with a specified key derivation algorithm [assignment: *key derivation algorithm*] and specified cryptographic key sizes [assignment: *list of key sizes*] that meet the following: [assignment: *list of standards*].

Application notes

1. DB encryption-related cryptographic key generation

- o The TOE shall use the random bit generator of the validated cryptographic module when generating encryption key required for database encryption.
 - When generating a key encryption key(KEK), it is also allowed to derive a cryptographic key from the password.
 - A key encryption key(KEK) can be derived from the password entered by the user.
 - When deriving a key encryption key(KEK) from the password, a secure method shall be applied suggested in TTAK.KO-12.0334-Part1~Part4.
 - Cryptographic keys generated by using the password is limited to the generation of a key encryption key(KEK).

2. Other cryptographic key generation

- o The TOE shall generate cryptographic keys in a secure manner.
 - Examples of secure cryptographic key generation methods are as follows.
 - Password-based key derivation (PKCS#5 v2.1(RFC 8018), NIST SP 800-132, etc.)
 - Key derivation with pre-shared keys(TTAK.KO-12.0272)
 - The password-based key derivation function shall only be used to generate a key encryption key(KEK).
 - The first key encryption key(KEK) shall be generated differently for each TOE.
 - The initial data(e.g. password, etc.) required to generate a key encryption key(KEK) can be entered directly or used by injecting the values stored in storage media such as smart cards, secure USBs, or security tokens(HSM: Hardware Security Module).
 - It is recommended that storage media use products that have obtained a security function confirmation or domestic/international CC certificate.
 - For details, refer to the cryptographic key generation section of the ^rCryptographic Key Management Guide (Ministry of Science and ICT, 2014).
 - When using a password as initial data for generating a key encryption key(KEK), the value

entered during the initial installation of the TOE can be stored and used, and the stored data shall be protected from unauthorized disclosure attempts.

6.2.2.2. FCS_RBG.2 Random bit generation (external seeding)

Component relationships

Hierarchical to No other components

Dependencies FCS_RBG.1 Random bit generation (RBG)

FCS_RBG.2.1 The TSF shall be able to accept a minimum input of [assignment: minimum]

input length greater than zero] from a TSF interface for obtaining entropy.

6.2.2.3. FCS_RBG.3 Random bit generation (internal seeding – single source)

Component relationships

Hierarchical to No other components

Dependencies FCS_RBG.1 Random bit generation (RBG)

FCS_RBG.3.1 The TSF shall be able to seed the DRBG using a [selection: choose one of:

TSF software-based entropy source, TSF hardware-based entropy source] [assignment: name of entropy source] with [assignment: number of bits]

bits of min-entropy.

6.2.2.4. FCS_RBG.4 Random bit generation (internal seeding – multiple sources)

Component relationships

Hierarchical to No other components

Dependencies FCS_RBG.1 Random bit generation (RBG)

FCS_RBG.5 Random bit generation (combining entropy sources)

FCS RBG.4.1 The TSF shall be able to seed the DRBG using [selection: [assignment:

number] TSF software-based entropy source(s), [assignment: number] TSF

hardware-based entropy source(s)].

6.2.2.5. FCS_RBG.5 Random bit generation (combining entropy sources)

Component relationships

Hierarchical to No other components

Dependencies FCS_RBG.1 Random bit generation (RBG)

[FCS_RBG.2 Random bit generation (external seeding), or

FCS_RBG.3 Random bit generation (internal seeding – single source), or

FCS_RBG.4 Random bit generation (internal seeding – multiple sources)]

FCS_RBG.5.1 The TSF shall [assignment: combining operation] [selection: output from TSF

entropy source(s), input from TSF interface(s) for obtaining entropy

resulting in a minimum of [assignment: *number of bits*] bits of min-entropy to create the entropy input into the derivation function as defined in [assignment: *list of standards*].

6.2.3. Identification and authentication (FIA)

6.2.3.1. FIA_UAU.5 Multiple authentication mechanisms

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FIA_UAU.5.1 The TSF shall provide [password authentication mechanism, [assignment: list

of additional authentication mechanisms]] to support user authentication.

FIA_UAU.5.2 The TSF shall authenticate any user's claimed identity according to the

[assignment: rules describing how the multiple authentication mechanisms

provide authentication].

Application notes

- o In case of the TOE supports additional identification and authentication methods, the TOE shall provide additional identification and authentication functions on its own or by interacting with external IT entities, in parallel with user account/password-based identification and authentication.
 - In order to provide additional identification and authentication functions, <u>△2FA support</u> <u>device complying with FIDO standards</u>, <u>△certificates</u>, <u>△one-time password generator(OTP)</u>, etc. can be used.
 - If it is supported in the TOE operational environment, '2FA support device complying with FIDO standards' is recommended.
 - If additional identification and authentication functions are provided in the TOE, the functions can be provided by receiving the authentication results from the inside of the TOE or from the interacted external IT entities.
 - If the TOE provides a certification utilization method, certificate validation shall be performed.
 - The authentication information used by external IT entities to perform additional identification and authentication methods shall be securely managed by the external IT entities. If the TOE stores authentication information use to perform additional identification and authentication methods, the requirements of FPT_PST.1 shall be applied.

6.2.4. Protection of the TSF (FPT)

6.2.4.1. FPT_LEE.1 Linkable external entities - authentication (Extended)

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FPT_LEE.1.1 The TSF shall perform [assignment: *list of actions*] and provide [assignment:

list of functions] by linking with external entities.

Application notes

o In case of the TOE supports additional identification and authentication methods, the TOE shall provide additional identification and authentication functions on its own or by interacting with external IT entities, in parallel with user account/password-based identification and authentication.

- In order to provide additional identification and authentication functions, <u>△2FA support</u> device complying with FIDO standards, <u>△certificates</u>, <u>△one-time password generator(OTP)</u>, etc. can be used.
 - If it is supported in the TOE operational environment, '2FA support device complying with FIDO standards' is recommended.
- If additional identification and authentication functions are provided in the TOE, the functions can be provided by receiving the authentication results from the inside of the TOE or from the interacted external IT entities.
- If the TOE provides a certification utilization method, certificate validation shall be performed.
- The authentication information used by external IT entities to perform additional identification and authentication methods shall be securely managed by the external IT entities. If the TOE stores authentication information use to perform additional identification and authentication methods, the requirements of FPT_PST.1 shall be applied.

6.2.4.2. FPT_RCV.1 Manual recovery

Component relationships

Hierarchical to No other components.

Dependencies AGD_OPE.1 Operational user guidance

FPT_RCV.1.1 After [assignment: list of failures/service discontinuities] the TSF shall enter a

maintenance mode where the ability to return to a secure state is

provided..

Application notes

• The agent or client shall provide a function to can recover modified information(<u>setting</u> <u>values, executable files, filter drivers, etc.</u>).

- 'Modified information' shall identify and include all files that affect the normal operation and of security functions of the TOE.
- 'Agent Type1' shall provide an automatic recovery function, and △Agent Type2 △Agent Type3 and △Client Type may provide a manual recovery function.

6.2.4.3. FPT_RCV.2 Automated recovery

Component relationships

Hierarchical to FRP_RCV.1 Manual recovery

Dependencies AGD_OPE.1 Operational user guidance

FPT_RCV.2.1 When automated recovery from [assignment: list of failures/service

discontinuities] is not possible, the TSF shall enter a maintenance mode

where the ability to return to a secure state is provided.

FPT_RCV.2.2 For [assignment: list of failures/service discontinuities], the TSF shall ensure

the return of the TOE to a secure state using automated procedures.

Application notes

o If the update function is provided, the TOE shall provide a function to automatically maintain the existing version when the update installation fails.

- If it is not supported by the TOE, manual recovery by the administrator shall be supported.
- The sponsor shall describe the manual recovery procedure by the administrator in detail in the deliverables.

6.2.4.4. FPT_TUD.1 TSF security patch update (Extended)

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FPT_TUD.1.1 The TSF shall provide the capability to view the **unique identification**

information of the TOE to [assignment: the authorized identified roles].

FPT_TUD.1.2 The TSF shall verify validity of the update files using [selection: verification

of published hash value, digital signature verification, [assignment: other

secure validation mechanism] | before installing updates.

- The TOE shall provide a function for users to check the 'unique identification information of the TOE'.
 - The TOE identification information shall be unique, can be checked by users through the interface, and cannot be modified or changed. It shall include the following.

- TOE name, TOE version, TOE release or build number
- If the TOE includes multiple components that are physically separated, the identification information of each component shall be unique, can be checked, and cannot be modified or changed by users. It shall include the following:
 - The name and version of the TOE including the component, The component name, The component version, The component release or build number.
- A version management system that can check whether the TOE and TOE components are patched and functionally improved should be applied.

(e.g., In case of patch and function improvement, a system for changing the major version, minor version, release number, and build number for each case is established to track the reason for the change of TOE/TOE components with version information)

- In case of hardware appliances, users shall be able to view the unique identification information of the firmware in addition to TOE identification information through TOE interface.
- o In case of providing the update function, the TOE shall verify the validity of the TOE update files before installing or applying the update files.
 - If the TOE provides online update or manual update function, only the update files that have succeeded in verification of the validity shall be installed or applied.
 - Integrity verification is mandatory when verify the validity of the update files, and shall be implemented using *digital signature verification, public hash value verification, etc.*
 - When verifying the digital signature, verification of the validity of the certificate (within 1 year of validity) shall be performed.
 - Cryptographic algorithm and cryptographic key security shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.
 - Update file validation results (success · failure) shall be recorded in the audit.
- o If the update function is provided, the TOE shall provide a function to automatically maintain the existing version when the update installation fails.
 - An audit record shall be generated for the update installation result and the reason for failure.
 - If it is not supported by the TOE, manual recovery by the administrator shall be supported.
 - The developer shall describe the manual recovery procedure by the administrator in detail in the deliverables.
- o In the case of an agent or client installed on the endpoint in Windows® environment, the agent or client shall perform the digital signature verification on the subject of file generation of the update target files received from the server or update server.
- It shall be applied to the agent or client existing on the endpoint where Windows® operating system is installed.
- All files that are irrelevant to TOE configuration without being included in installation files and policy files(e.g., patch files, general executable files, etc.) are not allowed to be

distributed to agents and clients.

- In case of verifying the digital signature, verification of the validity of the certificate(within 1 year of validity) shall be performed.
- The update file digital signature verification result(success, failure) shall be recorded in the audit record.
- The cryptographic-related part shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.
- Developers or administrators (who perform digital signatures on update files) shall perform digital signatures on the separate offline server that is disconnected from the Internet.
- o In the case of an agent or client installed on the endpoint in Windows® environment, the agent or client shall provide an integrity verification function for the server/update server address.
- o If there are two or more servers or update servers on the file transfer path, the receiving server shall perform integrity verification for the address of the sending server.

6.2.5. TOE access (FTA)

6.2.5.1. FTA_SSL.1 TSF-initiated session locking

Component relationships

Hierarchical to No other components.

Dependencies FIA_UAU.1 Timing of authentication

FTA_SSL.1.1 The TSF shall lock an interactive session after [assignment: *time interval of user inactivity*] by:

- a) clearing or overwriting display devices, making the current contents unreadable;
- b) disabling any activity of the user's data access/display devices other than unlocking the session.

FTA_SSL.1.2 The TSF shall require the following events to occur prior to unlocking the session: [[selection: unlocking session by the administrator, user re-authentication before unlocking session]].

- o The TOE shall provide a function to lock or terminate the session if it is not used for a certain period of time after the user session is connected.
 - The time information used shall be applied based on the server time.
 - A certain period of time refers to the amount of time accumulated after a connection that triggers session locking or termination.

CC:2022 R1

- A certain period of time can be fixed by the administrator among 10 minutes or less or set in proportion to the number of authentication failures.
- After the lock time has elapsed, a locked session shall be unlocked by the administrator or through the user authentication function for each session.
- An audit record shall be generated when the session lock or termination function is activated.
- It shall be applied to all management and local access included in the TOE.

6.2.5.2. FTA_SSL.3 TSF-initiated termination

Component relationships

Hierarchical to No other components.

Dependencies FMT_SMR.1 Security roles

FTA_SSL.3.1 The TSF shall terminate an interactive session after a [assignment: time

interval of user inactivity].

Application notes

- o The TOE shall provide a function to lock or terminate the session if it is not used for a certain period of time after the user session is connected.
 - The time information used shall be applied based on the server time.
 - A certain period of time refers to the amount of time accumulated after a connection that triggers session locking or termination.
 - A certain period of time can be fixed by the administrator among 10 minutes or less or set in proportion to the number of authentication failures.
 - After the lock time has elapsed, a locked session shall be unlocked by the administrator or through the user authentication function for each session.
 - An audit record shall be generated when the session lock or termination function is activated.
 - It shall be applied to all management and local access included in the TOE.

6.2.5.3. FTA_TSE.1(2) TOE session establishment

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FTA_TSE.1.1 The TSF shall be able to deny session establishment based on [assignment:

list of additional attributes of agent or client.]

- o In case of it is necessary to identify and authenticate a user existing in the agent or client constituting the TOE, the identification value shall be a unique value that is not registered in duplicate.
 - During user authentication, additional attributes of the registered agent or client shall also be authenticated.
 - Additional attributes: IP address is mandatory, and at least one of <u>MAC address, serial</u> <u>number, and information that can uniquely identify the agent itself</u> shall be additionally used.

6.2.6. Trusted path/channels (FTP)

6.2.6.1. FTP ITC.1 Inter-TSF trusted channel

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FTP_ITC.1.1 The TSF shall provide a communication channel between itself and another

trusted IT product that is logically distinct from other communication channels and provides assured identification of its end points and

protection of the channel data from modification or disclosure.

FTP ITC.1.2 The TSF shall permit [selection: the TSF, another trusted IT product] to

initiate communication via the trusted channel.

FTP_ITC.1.3 The TSF shall initiate communication via the trusted channel for

[assignment: list of functions for which a trusted channel is required].

- In case of interacting with external IT entities is supported, the TOE shall transmit data using a cryptographic communication channel to protect the transmitted data when interacting with external IT entities.
 - For secure cryptographic communication, confidentiality and integrity shall be provided using standard protocols.
 - Secure cryptographic communication protocols include <u>HTTPS (implemented using TLS), TLS</u> (TLS 1.2-RFC5246 or higher), SSH (SSH V2-RFC 4251, 4254), etc.
 - Use of its own protocol is not allowed.
 - The cryptographic communication channel can be implemented directly in the TOE or to be provided by the TOE using the operating environment.
 - This requirement shall be applied when the TOE provides a function that interacting with external IT entities to provide a security function.

- If transmission data is not protected using a cryptographic communication channel when interacting with external IT entities, the needlessness to protect the confidentiality and integrity of transmitted data shall be proven.
- Communication services that do not support cryptographic communication channels shall be able to be disabled.
- The cryptographic algorithm used, cryptographic key security, and cryptographic key storage method shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.
- o In case of audit records are stored in a log server outside the TOE, cryptographic communication shall be performed.
 - If syslog is supported, cryptographic transmission shall be supported through <u>syslog over</u> <u>DTLS(RFC 5424)</u>, <u>syslog over DTLS(RFC 6012)</u>, <u>etc.</u>
 - The cryptographic algorithm used, cryptographic key security, and cryptographic key storage method shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.

6.2.6.2. FTP_TRP.1 Trusted path

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FTP_TRP.1.1 The TSF shall provide a communication path between itself and [selection:

remote, local] users that is logically distinct from other communication paths and provides assured identification of its end points and protection of the communicated data from *modification, disclosure, [assignment: other types*

of integrity or confidentiality violation].

FTP_TRP.1.2 The TSF shall permit [selection: the TSF, local users, remote users] to initiate

communication via the trusted path

FTP_TRP.1.3 The TSF shall require the use of the trusted path for [selection: the

authentication of management access administrator, [assignment: other

services for which trusted path is required]].

- O During management access, the TOE shall transmit data using a cryptographic communication channel to protect the transmitted data.
 - For secure cryptographic communication, confidentiality and integrity shall be provided using standard protocols.
 - Secure cryptographic communication protocols include <u>HTTPS (implemented using TLS), TLS</u> (TLS 1.2-RFC5246 or higher), SSH (SSH V2-RFC 4251, 4254), etc.

- Use of its own protocol is not allowed.
- The cryptographic communication channel can be implemented directly in the TOE or to be provided by the TOE using the operational environment.
- The cryptographic algorithm used, cryptographic key security, and cryptographic key storage method shall satisfy the requirements of FCS class and 'Protection when storing cryptographic key' of FPT_PST.1.

6.3. Security functional requirements (Optional SFRs)

The 'optional SFRs' in this PP are as follows. The 'optional SFRs' are not required to be implemented mandatorily, but if the TOE provides relevant functions additionally, the ST author shall include the corresponding SFRs in the ST.

Function class	Securit	y functional components
Cryptographic support (FCS)	FCS_CKM.2	Cryptographic key distribution
Protection of the TSF (FPT)	FPT_STM.1	Reliable time stamps

[Table 10] Optional SFRs

6.3.1. Cryptographic support (FCS)

6.3.1.1. FCS_CKM.2 Cryptographic key distribution

Component relationships

Hierarchical to No other components.

Dependencies [FDP_ITC.1 Import of user data without security attributes, or

FDP_ITC.2 Import of user data with security attributes, or

FCS_CKM.1 Cryptographic key generation or

FCS_CKM.5 Cryptographic key derivation]

FCS_CKM.3 Cryptographic key access

FCS_CKM.2.1 The TSF shall distribute cryptographic keys in accordance with a specified

cryptographic key distribution method [assignment: cryptographic key distribution method] that meets the following: [assignment: list of

standards].

Application notes

o FCS_CKM.2 cryptographic key distribution is an optionally implementable functional requirement ('optional SFRs'), and if the TOE additionally provides the above function, the ST author shall include this requirement in the SFR.

6.3.2. Protection of the TSF (FPT)

6.3.2.1. FTP_STM.1 Reliable time stamps

Component relationships

Hierarchical to No other components.

Dependencies No dependencies.

FTP_STM.1.1 The TSF shall be able to provide the reliable time stamps.

- o Each component of the TOE shall generate audit records using trusted time information.
 - Trusted time information shall use the time information provided by the NTP server or operating system.

6.4. Security assurance requirements

Assurance requirements of this Protection Profile are comprised of assurance components in CC part 3, and the evaluation assurance level is EAL1+. The following table summarizes assurance components.

Assurance class	Security assurance components	
	ASE_INT.1	ST introduction
	ASE_CCL.1	Conformance claims
Security Target	ASE_OBJ.1	Security objectives for the operational environment
evaluation	ASE_ECD.1	Extended components definition
	ASE_REQ.1	Direct rationale security requirements
	ASE_TSS.1	TOE summary specification
Development	ADV_FSP.1	Basic functional specification
Guidance documents	AGD_OPE.1	Operational user guidance
	AGD_PRE.1	Preparative procedures
life avale avancem	ALC_CMC.1	Labelling of the TOE
Life-cycle support	ALC_CMS.1	TOE CM coverage
Tests	ATE_FUN.1	Functional testing
	ATE_IND.1	Independent testing - conformance
Vulnerability assessment	AVA_VAN.1	Vulnerability survey

[Table 11] Security assurance requirements

6.4.1. Security Target evaluation

6.4.1.1. ASE_INT.1 ST introduction

Dependencies No dependencies.

Developer action

elements

ASE_INT.1.1D The developer shall provide an ST introduction.

Content and presentation elements

ASE_INT.1.1C The ST introduction shall contain an ST reference, a TOE reference, a TOE

overview and a TOE description.

ASE_INT.1.2C The ST reference shall uniquely identify the ST.

ASE_INT.1.3C	The TOE reference shall uniquely identify the TOE.
ASE_INT.1.4C	The TOE overview shall summarise the usage and major security features of the TOE.
ASE_INT.1.5C	The TOE overview shall identify the TOE type.
ASE_INT.1.6C	The TOE overview shall identify any non-TOE hardware/software/firmware required by the TOE.
ASE_INT.1.7C	For a multi-assurance ST, the TOE overview shall describe the TSF organization in terms of the sub-TSFs defined in the PP-Configuration the ST claims conformance to.
ASE_INT.1.8C	The TOE description shall describe the physical scope of the TOE.
ASE_INT.1.9C	The TOE description shall describe the logical scope of the TOE.
Evaluator action elements	
ASE_INT.1.1E	The evaluator shall confirm that the information provided meets all
ASE_INT.1.2E	requirements for content and presentation of evidence. The evaluator shall confirm that the TOE reference, the TOE overview, and the TOE description are consistent with each other.

6.4.1.2. ASE_CCL.1 Conformance claims

Dependencies	ASE_INT.1 ST introduction	
	ACE ECD 4 E /	

ASE_ECD.1 Extended components definition ASE_REQ.1 Direct rationale security requirements

Deve	loper	action

elements

ASE_CCL.1.1D The developer shall provide a conformance claim.

ASE_CCL.1.2D The developer shall provide a conformance claim rationale.

Content and presentation elements

ASE_CCL.1.1C The conformance claim shall identify the edition of the CC to which the ST

and the TOE claim conformance.

ASE_CCL.1.2C The CC conformance claim shall describe the conformance of the ST to CC

Part 2 as either CC Part 2 conformant or CC Part 2 extended.

ASE_CCL.1.3C The CC conformance claim shall describe the conformance of the ST to CC

Part 3 as either CC Part 3 conformant or CC Part 3 extended.

ASE_CCL.1.4C The CC conformance claim shall be consistent with the extended

components definition.

CC.2022 KT	
ASE_CCL.1.5C	The conformance claim shall identify a PP-Configuration, or all PPs and security requirement packages to which the ST claims conformancepackages
ASE_CCL.1.6C	to which the ST claims conformance. The conformance claim shall describe any conformance of the ST to a package as either package-conformant or package-augmented.
ASE_CCL.1.7C	The conformance claim shall describe any conformance of the ST to a PP as PP-Conformant.
ASE_CCL.1.8C	The conformance claim rationale shall demonstrate that the TOE type is consistent with the TOE type in the PP-Configuration or PPs for which conformance is being claimed.
ASE_CCL.1.9C	The conformance claim rationale shall demonstrate that the statement of the security problem definition is consistent with the statement of the security problem definition in the PP-Configuration, PPs and any functional packages for which conformance is being claimed.
ASE_CCL.1.10C	The conformance claim rationale shall demonstrate that the statement of security objectives is consistent with the statement of security objectives in the PP-Configuration, PPs, and any functional package for which conformance is being claimed.
ASE_CCL.1.11C	The conformance claim rationale shall demonstrate that the statement of security requirements is consistent with the statement of security requirements in the PP-Configuration, PPs, and any functional packages for which conformance is being claimed.
ASE_CCL.1.12C	The conformance claim for PP(s) or a PP-Configuration shall be exact, strict, or demonstrable or a list of conformance types.
ASE_CCL.1.13C	If the conformance claim identifies a set of Evaluation methods and Evaluation activities derived from CEM work units that shall be used to evaluate the TOE then this set shall include all those that are included in any package, PP, or PP-Module in a PP-Configuration to which the ST claims conformance, and no others.
Evaluator action elements	
ASE_CCL.1.1E	The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

6.4.1.3. ASE_OBJ.1 Security objectives for the operational environment

Dependencies ASE_SPD.1 Security problem definition

Developer action

elements

CC:2022 R1

ASE_OBJ.1.1D The developer shall provide a statement of security objectives for the operational environment.

Content and presentation elements ASE_OBJ.1.1C The statement of security objectives shall describe the security objectives for the operational environment. ASE_OBJ.1.2C The security objectives rationale shall trace each security objective for the operational environment back to threats countered by that security objective, OSPs enforced by that security objective, and assumptions upheld by that security objective. ASE_OBJ.1.3C The security objectives rationale shall demonstrate that the security objectives for the operational environment uphold all assumptions. Evaluator action	ASE_OBJ.1.2D	The developer shall provide a security objectives rationale for the operational environment
ASE_OBJ.1.2C The security objectives rationale shall trace each security objective for the operational environment back to threats countered by that security objective, OSPs enforced by that security objective, and assumptions upheld by that security objective. ASE_OBJ.1.3C The security objectives rationale shall demonstrate that the security objectives for the operational environment uphold all assumptions. Evaluator action	presentation elements	
objectives for the operational environment uphold all assumptions.	ASE_OBJ.1.2C	The security objectives rationale shall trace each security objective for the operational environment back to threats countered by that security objective, OSPs enforced by that security objective, and assumptions upheld
	ASE_OBJ.1.3C	The security objectives rationale shall demonstrate that the security
ASE_OBJ.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.	elements	·

6.4.1.4. ASE_ECD.1 Extended components definition

Dependencies	No dependencies.
Debellacificies	no dependencies.

Deve	loper	action
------	-------	--------

elements

ASE_ECD.1.1D The developer shall provide a statement of security requirements.

ASE_ECD.1.2D The developer shall provide an extended components definition.

Content and
presentation
elements
ASE ECD.1.1C

ASE_ECD.1.1C The statement of security requirements shall identify all extended security

requirements.

ASE_ECD.1.2C The extended components definition shall define an extended component

for each extended security requirement.

ASE_ECD.1.3C The extended components definition shall describe how each extended

component is related to the existing CC components, families, and classes.

ASE_ECD.1.4C The extended components definition shall use the existing CC components,

families, classes, and methodology as a model for presentation.

ASE_ECD.1.5C The extended components shall consist of measurable and objective

elements such that conformance or nonconformance to these elements may

be demonstrated.

Evaluator action

elements									
ASE_ECD.1.1E	The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.								
ASE_ECD.1.2E	The evaluator shall confirm that no extended component can be clearly expressed using existing components.								
6.4.1.5. ASE REO.1	Direct rationale security requirements								
Dependencies	-								
·	ASE_SPD.1 Security problem definition								
	ASE_OBJ.1 Security objectives for the operational environment								
Developer action elements									
ASE_REQ.1.1D	The developer shall provide a statement of security requirements.								
ASE_REQ.1.2D	The developer shall provide a security requirements rationale.								
Content and									
presentation									
elements									
ASE_REQ.1.1C	The statement of security requirements shall describe the SFRs and the SARs.								
ASE_REQ.1.2C	For a single-assurance ST, the statement of security requirements shall define the global set of SARs that apply to the entire TOE. The sets of SARs shall be consistent with the PPs or PP-Configuration to which the ST claims conformance.								
ASE_REQ.1.3C	For a multi-assurance ST, the statement of security requirements shall define the global set of SARs that apply to the entire TOE and the sets of SARs that apply to each sub-TSF. The sets of SARs shall be consistent with the multi-assurance PP-Configuration to which the ST claims conformance.								
ASE_REQ.1.4C	All subjects, objects, operations, security attributes, external entities and other terms that are used in the SFRs and the SARs shall be defined.								
ASE_REQ.1.5C	The statement of security requirements shall identify all operations on the security requirements.								
ASE_REQ.1.6C	All operations shall be performed correctly.								
ASE_REQ.1.7C									
ASE_REQ.1.8C	The security requirements rationale shall demonstrate that the SFRs (in conjunction with the security objectives for the environment) counter all threats for the TOE.								
ASE_REQ.1.9C	The security requirements rationale shall demonstrate that the SFRs (in								

conjunction with the security objectives for the environment) enforce all

OSPs.

ASE_REQ.1.10C The security requirements rationale shall explain why the SARs were chosen.

ASE_REQ.1.11C The statement of security requirements shall be internally consistent.

ASE REQ.1.12C If the ST defines sets of SARs that expand the sets of SARs of the PPs or

PP-Configuration it claims conformance to, the security requirements rationale shall include an assurance rationale that justifies the consistency of the extension and provides a rationale for the disposition of any Evaluation methods and Evaluation activities identified in the conformance statement

that are affected by the extension of the sets of SARs.

Evaluator action

elements

ASE_REQ.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

6.4.1.6. ASE_TSS.1 TOE summary specification

Dependencies ASE_INT.1 ST introduction

ASE_REQ.1 Direct rationale security requirements

ADV_FSP.1 Basic functional specification

Developer action

elements

ASE_TSS.1.1D The developer shall provide a TOE summary specification

Content and presentation elements

ASE TSS.1.1C The TOE summary specification shall describe how the TOE meets each SFR.

Evaluator action

elements

ASE_TSS.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ASE_TSS.1.2E The evaluator shall confirm that the TOE summary specification is consistent

with the TOE overview and the TOE description.

6.4.2. Development

6.4.2.1. ADV_FSP.1 Basic functional specification

Dependencies No dependencies.

Developer action

CC:2022 R1

elements ADV_FSP.1.1D	The developer shall provide a functional specification.
ADV_FSP.1.2D	The developer shall provide a tracing from the functional specification to the SFRs.
Content and presentation elements	
ADV_FSP.1.1C	The functional specification shall describe the purpose and method of use for each SFR-enforcing and SFR-supporting TSFI.
ADV_FSP.1.2C	The functional specification shall identify all parameters associated with each SFR-enforcing and SFR-supporting TSFI.
ADV_FSP.1.3C	The functional specification shall provide rationale for the implicit categorization of interfaces as SFR-non-interfering.
ADV_FSP.1.4C	The tracing shall demonstrate that the SFRs trace to TSFIs in the functional specification.
Evaluator action	
ADV_FSP.1.1E	The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.
ADV_FSP.1.2E	The evaluator shall determine that the functional specification is an accurate and complete instantiation of the SFRs.

6.4.3. Guidance documents

6.4.3.1. AGD_OPE.1 Operational user guidance

Dependencies ADV_FSP.1 Basic functional specification

Developer action

elements

AGD_OPE.1.1D The developer shall provide operational user guidance.

Content and presentation elements

AGD_OPE.1.1C The operational user guidance shall describe, for each user role, the user-accessible functions and privileges that shall be controlled in a secure processing environment, including appropriate warnings.

AGD_OPE.1.2C The operational user guidance shall describe, for each user role, how to use the available interfaces provided by the TOE in a secure manner.

AGD_OPE.1.3C The operational user guidance shall describe, for each user role, the available functions and interfaces, in particular all security parameters under

AGD_OPE.1.4C	the control of the user, indicating secure values as appropriate. The operational user guidance shall, for each user role, clearly present each type of security-relevant event relative to the user-accessible functions that
AGD_OPE.1.5C	need to be performed, including changing the security characteristics of entities under the control of the TSF. The operational user guidance shall identify all possible modes of operation of the TOE (including operation following failure or operational error), their consequences and implications for maintaining secure operation.
AGD_OPE.1.6C	The operational user guidance shall, for each user role, describe the security controls to be followed in order to fulfil the security objectives for the operational environment as described in the ST.
AGD_OPE.1.7C	The operational user guidance shall be clear and reasonable.
Evaluator action elements AGD_OPE.1.1E	The evaluator shall confirm that the information provided meets all
700_01 L.1.1E	requirements for content and presentation of evidence.

6.4.3.2. AGD_PRE.1 Preparative procedures

Dependencies No dependencies.

Developer action

elements

AGD_PRE.1.1D The developer shall provide the TOE including its preparative procedures.

Content and presentation elements

AGD_PRE1.1C The preparative procedures shall describe all the steps necessary for secure

acceptance of the delivered TOE in accordance with the developer's delivery

procedures.

AGD_PRE1.2C The preparative procedures shall describe all the steps necessary for secure

installation of the TOE and for the secure preparation of the operational environment in accordance with the security objectives for the operational

environment as described in the ST.

Evaluator action

elements

AGD_PRE.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

AGD_PRE.1.2E The evaluator shall apply the preparative procedures to confirm that the

TOE can be prepared securely for operation.

6.4.4. Life-cycle support

6.4.4.1. ALC_CMC.1 Labelling of the TOE

Dependencies ALC_CMS.1 TOE CM coverage

Developer action

elements

ALC_CMC.1.1D The developer shall provide the TOE and a unique reference for the TOE.

Content and presentation elements

ALC_CMC.1.1C The TOE shall be labelled with its unique reference.

Evaluator action

elements

ALC_CMC.1.1E The evaluator shall confirm that the information provided meet requirements

for content and presentation of evidence.

6.4.4.2. ALC_CMS.1 TOE CM coverage

Dependencies No dependencies.

Developer action

elements

ALC_CMS.1.1D The developer shall provide a configuration list for the TOE.

Content and presentation elements

ALC_CMS.1.1C The configuration list shall include the following: the TOE itself; and the

evaluation evidence required by the SARs.

ALC_CMS.1.2C The configuration list shall uniquely identify the configuration items.

Evaluator action

elements

ALC_CMS.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

6.4.5. Tests

6.4.5.1. ATE_FUN.1 Functional testing

Dependencies ATE_COV.1 Evidence of coverage

Developer action

elements

ATE_FUN.1.1D The developer shall test the TSF and document the results.

ATE_FUN.1.2D The developer shall provide test documentation.

Content and presentation

elements

ATE_FUN.1.1C The test documentation shall consist of test plans, expected test results and

actual test results.

ATE_FUN.1.2C The test plans shall identify the tests to be performed and describe the

scenarios for performing each test. These scenarios shall include any

ordering dependencies on the results of other tests.

ATE_FUN.1.3C The expected test results shall show the anticipated outputs from a

successful execution of the tests.

ATE_FUN.1.4C The actual test results shall be consistent with the expected test results.

Evaluator action

elements

ATE_FUN.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

6.4.5.2. ATE_IND.1 Independent testing - conformance

Dependencies ADV_FSP.1 Basic functional specification

AGD_OPE.1 Operational user guidance AGD_PRE.1 Preparative procedures

Developer action

elements

ATE_IND.1.1D The developer shall provide the TOE for testing.

Content and

presentation

elements

ATE_IND.1.1C The TOE shall be suitable for testing.

Evaluator action

elements

ATE_IND.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ATE_IND.1.2E The evaluator shall test a subset of the TSF to confirm that the TSF

operates as specified.

6.4.6. Vulnerability assessment

6.4.6.1. AVA_VAN.1 Vulnerability survey

Dependencies ADV_FSP.1 Basic functional specification

AGD_OPE.1 Operational user guidance AGD_PRE.1 Preparative procedures

Developer action

elements

AVA_VAN.1.1D The developer shall provide the TOE for testing

Content and presentation elements

AVA_VAN.1.1C The TOE shall be suitable for testing.

Evaluator action

elements

AVA_VAN.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

AVA_VAN.1.2E The evaluator shall perform a search of public domain sources to identify

potential vulnerabilities in the TOE.

AVA_VAN.1.3E The evaluator shall conduct penetration testing, based on the identified

potential vulnerabilities, to determine that the TOE is resistant to attacks

performed by an attacker possessing Basic attack potential.

6.5. Security requirements rationale

6.5.1. Security functional requirements rationale

The rationale for the security functional requirements demonstrates the following:

- ▶ Each threat and organizational security policy is addressed by at least one security functional requirement.
- ▶ Each security functional requirement is traced to at least one threat or organizational security policy.

	T.	T.	T.	T.	T.	T.	T.	T.	T.	T.	P.	P.	P.
SFRs	SES SIO N_H IJAC K	RETR Y_AU TH_A TTE MPT	IMP ERS ON ATI ON	REPL AY	WEAK_PA SSWORD	UNAUTHO RIZED_INF O_LEAK	STORE D_DAT A_LEAK AGE	TRANS MISSIO N_DAT A_DAM AGE	WEAK_CR YPTO_PR OTOCOL S	TSF_ CO MP RO MIS E	AU DIT	SECUR E_OPER ATION	CRYP TO_S TREN GTH
FAU_ARP.1										0			
FAU_GEN.1											0		
FAU_SAA.1										0			
FAU_SAR.1											0		
FAU_SAR.3											0		
FAU_STG.1											0		
FAU_STG.2											0		
FAU_STG.4											0		
FAU_STG.5											0		
FCS_CKM.1(1)						0							0
FCS_CKM.1(2)							0	0	0				0
FCS_CKM.2						0	0	0	0				0
FCS_CKM.5						0	0	0	0				0
FCS_CKM.6						0	0	0	0				0
FCS_COP.1(1)						0							0
FCS_COP.1(2)							0	0	0				0
FCS_RBG.1						0	0	0	0				0
FCS_RBG.2						0	0	0	0				0
FCS_RBG.3						0	0	0	0				0
FCS_RBG.4						0	0	0	0				0
FCS_RBG.5						0	0	0	0				0
FDP_UDE.1						0							
FDP_RIP.1						0							

	T.	T.	T.	T.	T.	T.	T.	T.	T.	T.	P.	P.	P.
SFRs	SES SIO N_H IJAC K	RETR Y_AU TH_A TTE MPT	IMP ERS ON ATI ON	REPL AY	WEAK_PA SSWORD	UNAUTHO RIZED_INF O_LEAK	STORE D_DAT A_LEAK AGE	TRANS MISSIO N_DAT A_DAM AGE	WEAK_CR YPTO_PR OTOCOL S	TSF_ CO MP RO MIS E	AU DIT	SECUR E_OPER ATION	CRYP TO_S TREN GTH
FIA_AFL.1		0	0							0			
FIA_IMA.1			0										
FIA_SOS.1					0								
FIA_UAU.1			0							0			
FIA_UAU.4			0	0						0			
FIA_UAU.5			0							0			
FIA_UAU.7			0		0					0			
FIA_UID.1			0							0			
FMT_MOF.1										0		0	
FMT_MTD.1										0		0	
FMT_PWD.1					0					0		0	
FMT_SMF.1										0		0	
FMT_SMR.1										0		0	
FPT_FLS.1						0	0	0	0				0
FPT_ITT.1								0					
FPT_LEE.1			0							0			
FPT_PST.1							0						
FPT_RCV.1										0			
FPT_RCV.2										0			
FPT_STM.1											0		
FPT_TST.1						0	0	0	0	0			0
FPT_TUD.1										0			
FTA_MCS.2	0												
FTA_SSL.1	0												
FTA_SSL.3	0												
FTA_TSE.1(1)	0												
FTA_TSE.1(2)	0												
FTP_ITC.1								0					
FTP_TRP.1								0					

[Tables 12] correspondence with the 'security problem definition' and the 'security functional requirements'

T.SESSION_HIJACK FTA_MCS.2, FTA_SSL.1, FTA_SSL.3, FTA_TSE.1(1), FTA_TSE.1(2)

FTA_MCS.2 responds to T.SESSION_HIJACK by restricting concurrent access to the TOE with the same user account or same privileges.

FTA_SSL.1 and FTA_SSL.3 repond to T.SESSION_HIJACK by ensuring session locking or session termination for interactive sessions after a period of inactivity by authorized users.

FTA_TSE.1(1), FTA_TSE.1(2) respond to T.SESSION_HIJACK by ensuring that it determines whether to establish an authorized user access session based on IP, etc.

T.RETRY_AUTH_ATTEMPT

FIA_AFL.1

FIA_AFL.1 responds to T.RETRY_AUTH_ATTEMPT by defining the number of failed authentication attempts by authorized users and ensuring the ability to take responsive action when the defined number is reached.

T.IMPERSONATION

FIA_AFL.1, FIA_IMA.1, FIA_UAU.1, FIA_UAU.4, FIA_UAU.5,

FIA_UAU.7, FIA_UID.1,

FPT LEE.1

FIA_AFL.1 responds to T.IMPERSONATION by defining the number of failed authentication attempts by authorized users and ensuring the ability to take responsive action when the defined number is reached.

FIA_IMA.1 responds to T.IMPERSONATION by ensuring that mutual authentication is conducted between TOE components.

FIA_UAU.1, FIA_UAU.4, FIA_UAU.5, and FPT_LEE.1 respond to T.IMPERSONATION by ensuring that users attempting to access the TOE are successfully authenticated.

FIA_UAU.7 responds to T.IMPERSONATION by ensuring that only masked values will be output or no display to users during authentication and not providing feedback on the reason for failure in case of authentication failure.

FIA_UID.1 responds to T.IMPERSONATION by ensuring that users attempting to access the TOE are successfully identified.

T.REPLAY

FIA_UAU.4

FIA_UAU.4 responds to T.REPLAY by ensuring the ability to prevent reuse of authentication data.

T.WEAK_PASSWORD

FIA_SOS.1, FIA_UAU.7, FMT_PWD.1

FIA_UAU.7 responds to T.WEAK_PASSWORD by ensuring that only masked values will be output or no display to users during authentication.

FIA_SOS.1 responds to T.WEAK_PASSWORD by verifying that password complexity rules are satisfied.

FMT_PWD.1 responds to T.WEAK_PASSWORD by ensuring the ability to force a change of the default password when the authorized administrator first connects

FCS_CKM.1(1), FCS_CKM.2, FCS_CKM.5, FCS_CKM.6,
FCS_COP.1(1),
T.UNAUTHORIZED_INFO_LEAK

FCS_RBG.1, FCS_RBG.2, FCS_RBG.3, FCS_RBG.4, FCS_RBG.5,
FDP_UDE.1, FDP_RIP.1,
FPT_FLS.1, FPT_TST.1

FCS_CKM.1(1), FCS_CKM.2, FCS_CKM.5, FCS_RBG.1, FCS_RBG.2, FCS_RBG.3, FCS_RBG.4, FCS_RBG.5, FDP_UDE.1, FPT_FLS.1 and FPT_TST.1 respond to T.UNAUTHORIZED_INFO_LEAK by ensuring that a cryptographic key is created and distributed according to a secure cryptographic algorithm and key length when encrypting and decrypting important user information stored in the database.

FCS_CKM.6 responds to T.UNAUTHORIZED_INFO_LEAK by ensuring that cryptographic keys are destroyed according to the specified cryptographic key destruction method after encrypting and decrypting important user information stored in the database.

FCS_COP.1(1) responds to T.UNAUTHORIZED_INFO_LEAK by ensuring that cryptographic operations are performed according to the specified secure algorithm and cryptographic key length when encrypting and decrypting important user information stored in the database.

FDP_RIP.1 responds to T.UNAUTHORIZED_INFO_LEAK by ensuring that all original user data is deleted after the encrypting and decrypting important user information stored in the database

FDP_UDE.1 responds to T.UNAUTHORIZED_INFO_LEAK by ensuring that encryption and decryption occur when an authorized user stores important information in the database.

	FCS_CKM.1(2), FCS_CKM.2, FCS_CKM.5, FCS_CKM.6,
TCTORED DATA LEAVACE	FCS_COP.1(2), FCS_RBG.1, FCS_RBG.2, FCS_RBG.3, FCS_RBG.4,
T.STORED_DATA_LEAKAGE	FCS_RBG.5
	FPT_FLS.1, FPT_PST.1, FPT_TST.1

FCS_CKM.1(2), FCS_CKM.2, FCS_CKM.5, FCS_RBG.1, FCS_RBG.2, FCS_RBG.3, FCS_RBG.4, FCS_RBG.5, FPT_FLS.1 and FPT_TST.1 respond to T.STORED_DATA_LEAKAGE by ensuring that a cryptographic key is created and distributed according to a secure cryptographic algorithm and key length when encrypting stored data.

FCS_CKM.6 responds to T.STORED_DATA_LEAKAGE by ensuring that the cryptographic keys and their related information are destroyed according to the specified cryptographic key destruction method upon completion of storage data encryption.

FCS_COP.1(2) responds to T.STORED_DATA_LEAKAGE by ensuring that cryptographic operations are performed according to the specified secure algorithm and specified cryptographic key length when encrypting stored data.

FPT_PST.1 responds to T.STORED_DATA_LEAKAGE by ensuring that the stored TSF data is protected from being leaked by means of encryption, access control, etc.

	FCS_CKM.1(2), FCS_CKM.2, FCS_CKM.5, FCS_CKM.6,
T TDANICANICCIONI DATA DANAACE	FCS_COP.1(2), FCS_RBG.1, FCS_RBG.2, FCS_RBG.3, FCS_RBG.4,
T.TRANSMISSION_DATA_DAMAGE	FCS_RBG.5,
	FPT_FLS.1, FPT_ITT.1, FPT_TST.1,

FTP ITC.1, FTP TRP.1

FCS_CKM.1(2), FCS_CKM.2, FCS_CKM.5, FCS_RBG.1, FCS_RBG.2, FCS_RBG.3, FCS_RBG.4, FCS_RBG.5, FPT_FLS.1, and FPT_TST.1 respond to T.TRANSMISSION_DATA_DAMAGE by ensuring that a cryptographic key is created and distributed according to a secure cryptographic algorithm and key length during cryptographic communication.

FCS_CKM.6 responds to T.TRANSMISSION_DATA_DAMAGE by ensuring that cryptographic keys and their related information are destroyed according to the specified cryptographic key destruction method at the end of cryptographic communication.

FCS_COP.1 responds to T.TRANSMISSION_DATA_DAMAGE by ensuring that cryptographic operations are performed according to the specified secure algorithm and specified cryptographic key length during cryptographic communication.

FPT_ITT.1 responds to T.TRANSMISSION_DATA_DAMAGE by ensuring the confidentiality and integrity of transmission data between TOE components.

FTP_ITC.1 responds to T.TRANSMISSION_DATA_DAMAGE by ensuring the confidentiality and integrity of transmission data between the TOE and external IT entities.

FTP_TRP.1 responds to T.TRANSMISSION_DATA_DAMAGE by ensuring the confidentiality and integrity of transmission data between external IT entities and the TOE during the management access process.

	FCS_CKM.1(2), FCS_CKM.2, FCS_CKM.5, FCS_CKM.6,
TAMEAU CONDTO DOCTOCOLO	FCS_COP.1(2), FCS_RBG.1, FCS_RBG.2, FCS_RBG.3, FCS_RBG.4,
T.WEAK_CRYPTO_PROTOCOLS	FCS_RBG.5
	FPT_FLS.1, FPT_TST.1

FCS_CKM.1(2), FCS_CKM.2, FCS_CKM.5, FCS_RBG.1, FCS_RBG.2, FCS_RBG.3, FCS_RBG.4, FCS_RBG.5, FPT_FLS.1, and FPT_TST.1 respond to T.WEAK_CRYPTO_PROTOCOLS by ensuring that the cryptographic key is created and distributed according to the standard cryptographic algorithm and key length with a security strength of 112 bits or more when encrypting transmission data.

FCS_CKM.6 responds to T.WEAK_CRYPTO_PROTOCOLS by ensuring that the cryptographic key is destroyed according to the specified destruction method.

FCS_COP.1(2)responds to T.WEAK_CRYPTO_PROTOCOLS by ensuring that cryptographic operations are performed according to the standard cryptographic algorithm and cryptographic key length with a security strength of 112 bits or more when encrypting transmission data.

	FAU_ARP.1, FAU_SAA.1,
	FIA_AFL.1, FIA_UAU.1, FIA_UAU.4, FIA_UAU.5, FIA_UAU.7,
T.TSF_COMPROMISE	FIA_UID.1
	FMT_MOF.1, FMT_MTD.1, FMT_PWD.1, FMT_SMF.1, FMT_SMR.1,
	FPT_LEE.1, FPT_RCV.1, FPT_RCV.2, FPT_TST.1, FPT_TUD.1

FAU_ARP.1 responds to T.TSF_COMPROMISE by ensuring the ability to take response actions when detecting security violations such as TOE integrity compromise, etc.

FAU_SAA.1 responds to T.TSF_COMPROMISE by ensuring the ability to review audited events to point out security violations, such as TOE integrity compromise.

FIA_AFL.1, FIA_UAU.1, FIA_UAU.4, FIA_UAU.5, FIA_UAU.7, FIA_UID.1, and FPT_LEE.1 respond to T.TSF_COMPROMISE by allowing access to the TOE only after successful user identification and authentication, ensuring the blocking of bypass access by threat agents.

FMT_MOF.1, FMT_MTD.1, FMT_PWD.1, FMT_SMF.1, and FMT_SMR.1 respond to T.TSF_COMPROMISE by dividing authorized user roles into administrator and end user when accessing and configuring management functions, and by providing security policies and functions based on those roles to ensure blocking of unauthorized access by threat agents.

FPT_RCV.1 responds to T.TSF_COMPROMISE by ensuring that the TOE agents or clients can recover modified information.

FPT_RCV.2 responds to T.TSF_COMPROMISE by ensuring that the existing version is automatically maintained in the event of a failure of the TOE update installation.

FPT_TST.1 responds to T.TSF_COMPROMISE by ensuring the TSF self-testing for accurate operation of the TOE and ensuring that authorized administrators can verify the integrity of TSF data and the TSF itself.

FPT_TUD.1 responds to T.TSF_COMPROMISE by ensuring that only validated TOE update files are installed and applied.

P.AUDIT FAU_STG.4, FAU_STG.5,
FPT_STM.1

FAU_GEN.1, FAU_SAR.3, FAU_STG.1, FAU_STG.2,
FAU_STG.4, FAU_STG.5,

FAU_GEN.1 satisfies P.AUDIT by ensuring that audit records are generated for auditable events such as the startup/termination of the audit function and the success/failure of the identification and authentication of the administrator.

FAU_SAR.1 satisfies P.AUDIT by providing the authorized administrator with the ability to retrieve audit records and ensuring that the audit records are presented in a manner suitable for the administrator to interpret the information.

FAU_SAR.3 satisfies P.AUDIT by providing a selective audit review function based on logical relationship criteria for audit data.

FAU_STG.1 satisfies P.AUDIT by providing the ability to store audit data in local storage or transmit it to an external IT entity for storage in real time using a trusted channel for the TOE server.

FAU_STG.2 satisfies P.AUDIT by providing the ability to protect against unauthorized modifications and deletions of stored audit data.

FAU_STG.4 satisfies P.AUDIT by ensuring that appropriate response actions are taken if the audit trail on the TOE server exceeds the storage limit.

FAU_STG.5 satisfies P.AUDIT by ensuring the ability to take appropriate response actions when the audit trail of the TOE server is full.

FPT_STM.1 satisfies P.AUDIT by ensuring that each component of the TOE generates audit records using trusted time information.

P.SECURE OPERATION	FMT_MOF.1, FMT_MTD.1, FMT_PWD.1, FMT_SMF.1,	
P.SECORE_OPERATION	FMT_SMR.1	

FMT_MOF.1 satisfies P.SECURE_OPERATION by ensuring that only authorized users have the ability to manage security functions.

FMT_MTD.1 satisfies P.SECURE_OPERATION by ensuring that only authorized users have the ability to manage the TSF data.

FMT_PWD.1 satisfies P.SECURE_OPERATION by ensuring that only authorized administrators have the ability to manage the combination rules and length of IDs and passwords, and by providing functions such as changing passwords when authorized administrators first access.

FMT_SMF.1 satisfies P.SECURE_OPERATION by requiring management functions such as security functions to be performed by the TSF, the TSF data, etc. to be specified.

FMT_SMR.1 satisfies P.SECURE_OPERATION by ensuring that authorized roles related to security management are specified.

D COVOTO CEDENICELL	FCS_CKM.1(1), FCS_CKM.1(2), FCS_CKM.2, FCS_CKM.5, FCS_CKM.6, FCS_COP.1(1), FCS_COP.1(2), FCS_RBG.1,
P.CRYPTO_STRENGTH	FCS_RBG.2, FCS_RBG.3, FCS_RBG.4, FCS_RBG.5, FPT_FLS.1, FPT_TST.1

FCS CKM.1(2), FCS CKM.2, FCS CKM.5, FCS CKM.1(1), FCS CKM.6, FCS COP.1, FCS RBG.1, FCS RBG.2, FCS RBG.3, FCS RBG.4, FCS RBG.5, FPT FLS.1, and FPT TST.1 satisfy P.CRYPTO_STRENGTH by ensuring that the cryptographic keys required for standard cryptographic algorithms with a security strength of 112 bits or more are securely generated and distributed during data encryption.

FCS_COP.1(1), FCS_COP.1(2) satisfies P.CRYPTO_STRENGTH by ensuring that cryptographic operations are performed according to standard cryptographic algorithms with a security strength of 112 bits or more and the cryptographic key length during data encryption.

6.5.2. Security assurance requirements rationale

The evaluation assurance level of this PP was selected as EAL1+(ATE_FUN.1).

EAL1 can be applied in cases where a certain degree of trust in correct operation is required, but the threat to security is not serious. If EAL1 is developed according to the development methodology commonly applied by the developer, no additional effort is required from the developer to prepare the evaluation submissions. In other words, there is no need to invest more money or time to prepare for the evaluation.

EAL1 provides a basic level of assurance by analyzing the security functional requirements included in the limited security target using function and interface specifications and documentation to understand security behavior.

This analysis is supported by independent testing of the TSF and searching for potential vulnerabilities in the public domain(functional testing and penetration testing).

EAL1 does not require evidence of testing conducted by the developer based on functional specifications, but ATE_FUN.1 was added in this PP to allow the developer to independently test whether the TSF has been implemented correctly and whether defects have occurred, etc. and document the results.

6.5.3. Dependency rationale of security functional requirements

The following table shows dependency of security functional requirements.

No.	Security functional requirements	Dependency	Reference No.	SFR type
1	FAU_ARP.1	FAU_SAA.1	3	Mandatory
2	FAU_GEN.1	FPT.STM.1	Rationale(1)	Mandatory
3	FAU_SAA.1	FAU_GEN.1	2	Mandatory
4	FAU_SAR.1	FAU_GEN.1	2	Mandatory
5	FAU_SAR.3	FAU_SAR.1	4	Mandatory
6	FALL CTC 1	FAU_GEN.1	2	Mandatani
6	FAU_STG.1	FTP_ITC.1	Rationale(2)	Mandatory
7	FAU_STG.2	FAU_GEN.1	2	Conditionally mandatory
8	FAU_STG.4	FAU_STG.2	Rationale(3)	Conditionally mandatory
9	FAU_STG.5	FAU_STG.2	Rationale(3)	Conditionally mandatory
		[FCS_CKM.2 or FCS_CKM.5 or FCS_COP.1]	12, 13, 15	•
10	FCS_CKM.1(1)	FCS_CKM.3	Rationale(4)	N.A l
10		[FCS_RBG.1 or FCS_RNG.1]	17	Mandatory
	×	FCS_CKM.6	14	
		[FCS_CKM.2 or FCS_CKM.5 or FCS_COP.1]	12, 13, 16	
11	FCS_CKM.1(2)	FCS_CKM.3	Rationale(4)	Mandatory
	·	[FCS_RBG.1 or FCS_RNG.1]	17	
	·	FCS_CKM.6	14	
12	FCS_CKM.2	[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1 or FCS_CKM.5]	10, 11, 13	Optional
		FCS_CKM.3	Rationale(4)	
4.2	ECC CVA A E	[FCS_CKM.2 or FCS_COP.1]	12, 15, 16	Conditionally
13	FCS_CKM.5	FCS_CKM.6	14	mandatory
14	FCS_CKM.6	[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1 or FCS_CKM.5]	10, 11, 13	Mandatory
15	FCS_COP.1(1)	[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1 or FCS_CKM.5]	10, 13	Mandatory
	_	FCS_CKM.6	14	y
16	FCS_COP.1(2)	[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1 or	11, 13	Mandatory

No.	Security functional requirements	Dependency	Reference No.	SFR type
	•	FCS_CKM.5]		
		FCS_CKM.6	14	
		[FCS_RBG.2 or FCS_RBG.3]	18, 19	
17	FCS_RBG.1	FPT_FLS.1	41	Mandatory
		FPT_TST.1	49	
18	FCS_RBG.2	FCS_RBG.1	17	Conditionally mandatory
19	FCS_RBG.3	FCS_RBG.1	17	Conditionally mandatory
20	FCS_RBG.4	FCS_RBG.1	17	Conditionally
20		FCS_RBG.5	21	mandatory
	FCS_RBG.5	FCS_RBG.1	17	Conditionally
21		[FCS_RBG.2 or FCS_RBG.3 or FCS_RBG.4]	18, 19, 20	mandatory
22	FDP_UDE.1	FCS_COP.1	15	Mandatory
23	FDP_RIP.1	- -	-	Mandatory
24	FIA_AFL.1	FIA_UAU.1	27	Mandatory
25	FIA_IMA.1	-	-	Mandatory
26	FIA_SOS.1	-	-	Mandatory
27	FIA_UAU.1	FIA_UID.1	31	Mandatory
28	FIA_UAU.4	-	-	Mandatory
29	FIA_UAU.5	-	-	Conditionally mandatory
30	FIA_UAU.7	FIA_UAU.1	27	Mandatory
31	FIA_UID.1	-	_	Mandatory
	FMT_MOF.1	FMT_SMF.1	35	Mandatory
32		FMT_SMR.1	36	
	FMT_MTD.1	FMT_SMF.1	35	
33		FMT_SMR.1	36	Mandatory
34	FMT_PWD.1	FMT_SMF.1	35	_
		FMT_SMR.1	36	Mandatory
35	FMT_SMF.1		_	Mandatory
36	FMT_SMR.1	FIA_UID.1	31	Mandatory
37	FPT_FLS.1		_	Mandatory
38	FPT_ITT.1	-	_	Mandatory
39	FPT_LEE.1	-	-	Conditionally
40	FPT_PST.1		_	Mandatory
41	FPT_RCV.1	AGD_OPE.1	_	Mandatory
42	FPT_RCV.1	AGD_OPE.1	-	Conditionally
43	FPT_STM.1	-	_	mandatory Conditionally
				mandatory
44	FPT_TST.1	-	-	Mandatory
45	FPT_TUD.1	-	-	Conditionally mandatory

No.	Security functional requirements	Dependency	Reference No.	SFR type
46	FTA_MCS.2	FIA_UID.1	31	Mandatory
47	FTA_SSL.1	FIA_UAU.1	27	Conditionally mandatory
48	FTA_SSL.3	FMT_SMR.1	36	Conditionally mandatory
49	FTA_TSE.1(1)	-	-	Mandatory
50	FTA_TSE.1(2)	-	-	Conditionally mandatory
51	FTP_ITC.1	-	-	Conditionally mandatory
52	FTP_TRP.1		-	Conditionally mandatory

[Table 13] Rationale for the dependency of the security functional requirements

The ST author refers to the table above and prepares a dependency relationship rationale table for the SFRs included in the ST.

Rationale(1): FAU_GEN.1 has the dependency on FAU_STG.1. However, since the TOE of this PP has been prepared to reflect for the TOE implemented in various types, if the pertinent function is implemented by the TOE, the ST author needs to identify the optional SFR (FPT_STM.1) as the SFR of the ST and describe the pertinent reference number. In addition, if FPT_STM.1 is supported by the operational environment, the author shall add the security objectives for the operational environment and a justification must be provided to state that there is no need to satisfy the dependencies.

Rationale(2): FAU_STG.1 has the dependency on FTP_ITC.1. However, since the TOE of this PP has been prepared to reflect for the TOE implemented in various types, if the function of transmitting audit data generated to an external IT entity is implemented by the TOE, the ST author needs to identify the conditionally mandatory SFR (FTP_ITC.1) as the SFR of the ST and describe the pertinent reference number. In addition, if audit data is stored in the TOE itself and FTP_ITC.1 has not been added to the ST, a justification must be provided to state that there is no need to satisfy the dependencies.

Rationale(3): FAU_STG.4 and FAU_STG.5 have the dependency on FAU_STG.2. However, since the TOE of this PP has been prepared to reflect for the TOE implemented in various types, if the pertinent function is implemented by the TOE, the ST author needs to identify the conditionally mandatory SFR (FAU_STG.2) as the SFR of the ST and describe the pertinent reference number. In addition, if FAU_STG.2 is supported by the operational environment (e.g., DBMS), the author shall add the security objectives for the operational environment and a justification must be provided to state that there is no need to satisfy the dependencies.

Rationale(4): FCS_CKM.3 Cryptographic key access component is intended to allow the requirements for using keys outside of the TOE (e.g. . backup, archival, escrow, recovery) be specified and to require the method used to access the cryptographic key be specified. Since this function is not required in the Security Requirements for Government, it has not been added in this PP.

6.5.4. Dependency rationale of security assurance requirements

The dependency of EAL1 assurance package provided in the CC is already satisfied, the rationale is omitted.

The augmented SAR ATE_FUN.1 has dependency on ATE_COV.1. but, ATE_FUN.1 is augmented to require developer testing in order to check if the developer correctly performed and documented the tests in the test documentation, ATE_COV.1 is not included in this PP since it is not necessarily required to show the correspondence between the tests and the TSFIs.

This protection profile complies with the EAL1 assurance package, but ASE_OBJ.1 includes ASE_SPD.1, which is absent in the EAL1 assurance package due to a dependency.

However, this direct rationale protection profile includes a security problem definition, and ASE_OBJ.1 provides indirect assurance on the security problem definition, such as requesting an investigation to see if the security objectives for the TOE operating environment are traced to the security problem definition. Therefore, ASE_SPD.1, which is related to the request for a description of the security problem definition, was judged not to be absolutely necessary and was not added to this protection profile.

ASE_REQ.1 also includes ASE_SPD.1, which is absent in the EAL1 assurance package due to dependency. However, this direct rationale protection profile includes a security problem definition, and ASE_REQ.1 provides indirect assurance on the security problem definition, such as requesting an investigation to see if the SFR is traced to the security problem definition. Therefore, ASE_SPD.1, which is related to the request for description of security problem definition, was judged not to be absolutely necessary and was not added to this protection profile.

References

Title	Author	Remark
Common Criteria for Information Technology Security Evaluation, CC:2022, Revision 1 • Common Criteria for Information Technology Security Evaluation, Part 1: Introduction and General Model, CC:2022 R1 (CCMB-2022-11-001, 2022. 11.)		
 Common Criteria for Information Technology Security Evaluation, Part 2: Security Functional Components, CC:2022 R1 (CCMB-2022-11-002, 2022.11.) 		
 Common Criteria for Information Technology Security Evaluation. Part 3: Security Assurance Components, CC:2022 R1 (CCMB-2022-11-003, 2022.11.) 	ССМВ	2022. 11.
 Common Criteria for Information Technology Security Evaluation. Part 4: Framework for the specification of evaluation methods and activities, CC:2022 R1 (CCMB-2022-11-004, 2022.11.) 		
Common Criteria for Information Technology Security Evaluation. Part 5: Pre-defined packages of security requirements, CC:2022 R1 (CCMB-2022-11-005, 2022.11.)		
Errata and Interpretation for CC:2022 (Release 1) and CEM:2022 (Release 1), CCMB-2024-07-002 Version 1.1, July 2024		
Security Requirements for Government V3.0 for the Information Security Systems and Network Devices	National Intelligence Service	2023. 8. 21.
- Part 2 Common Security Requirements - Server Common Security Requirements V3.0 R1		2022. 11. 3.
- Part 2 Common Security Requirements - Endpoint Common Security Requirements V3.0 R1		2022. 11. 3.
Database Encryption Product Testing Criteria		2024. 1.

Abbreviated terms

CBC Cipher Block Chaining

CC Common Criteria

CCMB Common Criteria Maintenance Board

CFB Cipher Feedback
CTR Counter Mode

ECB Electronic Codebook
DEK Data Encryption Key

EAL Evaluation Assurance Level

HMAC Hash-based Message Authentication Code

HTTPS Hypertext Transfer Protocol over Secure Socket Layer

IP Internet Protocol

IPSec Internet Protocol Security
IT Information Technology

IV Initial Vector

KEK Key Encryption Key

NTP Network Time Protocol

OFB Output Feedback

SFP Security Function Policy

SFR Security Functional Requirement

SHA Secure Hash Algorithm
SMS Short Message Service

SSH Secure Shell

SSL Secure Socket Layer

ST Security Target

TLS Transport Layer Security
TOE Target of Evaluation

TSF TOE Security Functionality