

1

Application Software Protection Profile (ASPP)
Extended Package: File Encryption:

Mitigating the Risk of Disclosure of Sensitive Data on a System

10 November 2014

Version 1.0

2

Table of Contents

1 Introduction

1.1 How to Use This Extended Package

1.2 Compliant Targets of Evaluation

1.2.1 Usage and Major Security Features of the Target of Evaluation (TOE)

1.2.2 The TOE and its Supporting Environment

2 Conformance Claims

2.1 Conformance Claim

3 Security Problem Definition

3.1 Threats

3.2 Assumptions

3.3 Organizational Security Policy

4 Security Objectives

4.1 Security Objectives for the TOE

4.2 Security Objectives for the Operational Environment

5 Security Objectives

5.1 Conventions

6 Security Functional Requirements

6.1 Security Functional Requirements for the File Encryption Application (TOE)

6.1.1 Class: Cryptographic Support (FCS)

6.1.2 Class: User Data Protection (FDP)

6.1.3 Class: Identification and Authentication (FIA)

6.1.4 Class: Security Management (FMT)

6.1.5 Class: Protection of the SF (FPT)

6.2 Security Functional Requirements for the Software File Encryption Application or Client Platform

6.2.1 Class: Cryptographic Support (FCS)

6.2.2 Class: User Data Protection (FDP)

6.3 Security Assurance Requirements for the File Encryption Application (TOE)

6.3.1 Class ADV: Development

6.3.2 Class AGD: Guidance Documents

6.3.3 Class ATE: Tests

6.3.4 Class AVA: Vulnerability assessment

3

6.3.5 Class ALC: Life-cycle support

6.4 Rationale for Security Functional Requirements

Appendix A: Rationale

Appendix B: Optional Requirements

Appendix C: Selection-Based Requirements

Appendix D: Objective Requirements

Appendix E: Glossary, Acronyms, and References

Appendix F: EP Identification

Appendix G: Initialization Vector Requirements for NIST-Approved Cipher Modes

4

Revision History

Version Date Description

0.1 25 July 2014 Initial release

1.0 10 November 2014 Public release, incorporating comments received

5

1 Introduction
This Extended Package (EP) describes security requirements for an encryption product that is
configurable for the data it encrypts and is intended to provide a minimal, baseline set of
requirements that are targeted at mitigating well defined and described threats. However, this EP
is not complete in itself, but rather extends the Protection Profile for Application Software (AS PP).
This introduction will describe the features of a compliant Target of Evaluation, and will also discuss
how this EP is to be used in conjunction with the AS PP.

1.1 Conformance Claims

1 The Application Software Protection Profile (AS PP) defines the baseline Security Functional
Requirements (SFRs) and Security Assurance Requirements (SARs) for application software
products. This EP serves to extend the AS PP baseline with additional SFRs and associated
‘Assurance Activities’ specific to File Encryption products. Assurance Activities are the actions that
the evaluator performs in order to determine a TOE’s compliance to the SFRs.

2 This EP conforms to Common Criteria for Information Technology Security Evaluation, Version 3.1,
Revision 4. It is CC Part 2 extended and CC Part 3 conformant.

3 In order to be conformant to this EP, a TOE must demonstrate Exact Compliance. Exact
Compliance, a subset of Strict Compliance as defined by the CC, is defined as the ST containing all
of the requirements in section 4 of the AS PP, and potentially requirements from Appendix C of the
AS PP. While iteration is allowed, no additional requirements (from the CC parts 2 or 3) are allowed
to be included in the ST. Further, no requirements in section 4 of the AS PP are allowed to be
omitted.

1.2 How to Use This Extended Package

4 As an EP of the AS PP, it is expected that the content of both this EP and the AS PP be appropriately
combined in the context of each product-specific Security Target. This EP has been specifically
defined such that there should be no difficulty or ambiguity in so doing. An ST must identify the
applicable versions of the AS PP (see http://www.niap-ccevs.org/pp/ for the current version) and
this EP in its conformance claims. When requirements are referenced from the AS PP, a short
notation is included.

1.3 Compliant Targets of Evaluation

5 This EP specifically addresses encryption of a set of data. This EP addresses the primary threat that
an unauthorized user will obtain access to a host machine containing encrypted information and be
able to extract the sensitive data through the process of decryption. The Target of Evaluation (TOE)
defined in this EP is an encryption product that will inherently encrypt all of that data that the user
selects to encrypt. For ease of explanation, “file” will frequently be used to refer to the object that
is encrypted (however, it could be any number of things – folders, volumes, containers, etc.).

6 There are two use cases for this EP. First, the traditional ability to encrypt files and power down
the machine and know the data is securely protected. Second, the ability to encrypt a file on a
machine and then send the encrypted file securely using a non-encrypted data in transit method.

6

1.3.1 Usage and Major Security Features of the Target of Evaluation (TOE)

7 File encryption is the process of encrypting individual files or sets of files (or volumes, or
containers, etc.) on an end user device and permitting access to the encrypted data only after
proper authentication is provided. Encryption products that conform to this EP must render
information inaccessible to anyone (or, in the case of other software on the machine, anything)
that does not have the proper authentication credential. For the purposes of this EP, “set of files”
describes implementations that use one encryption key to encrypt more than one file.

8 The foremost security objective of file encryption is to force an adversary to perform a
cryptographic exhaust against a prohibitively large key space. Note that this can be achieved only if
the authorized user of the file encryption product follows good security practices and does not
store an authorization factor in the clear.

9 Technology is changing at a rapid rate and the definition of mobile devices and traditional
laptop/PC devices is quickly merging. Requirements will diverge slightly for Mobile vs Laptop/PC
and the Assurance Activities will describe any differences. For this EP, the following table will be
used to explain the general principles for several key concepts, including power state and memory
management.

Topic Mobile Laptop/PC

Memory Management -
when the TOE is running

The TOE must initiate the request to
clear the cryptographic keys and
plaintext data, but the TOE Platform
will handle the actual instruction
through memory management
queue. (AS PP or MDF PP) (The
assurance is dependent on the TOE
Platform to perform the action of
clearing the plaintext data and
cryptographic keys.)

The TOE is responsible for handling
the clearing of cryptographic keys and
plaintext in volatile memory by
overwrite or zeroization. (Risk: Non-
volatile memory (page files) may still
contain the original plaintext data
and keys. Reboot is required to
ensure that this memory space has
been wiped. This risk can be
minimized by following good
operational practices.)

Memory Management -
when the TOE application
cleanly closes

The TOE must initiate the request to
clear the cryptographic keys and
plaintext data, but the TOE Platform
will handle the actual instruction
through memory management
queue. (AS PP or MDF PP) (The
assurance is dependent on the TOE
Platform to perform the action of
clearing the plaintext data and
cryptographic keys.)

The TOE's application memory space
is gone and all volatile memory
associated with the application no
longer exists. All plaintext data and
plaintext keys have been destroyed.
(Risk: Non-volatile memory (page
files) may still contain the original
plaintext data and keys. Reboot is
required to ensure that this memory
space has been wiped. This risk can
be minimized by following good
operational practices.)

Memory Management -
Lockscreen

If the TOE is running and a plaintext
document is displayed on the screen
the user's data is not protected.

Lockscreen/Standby/Hibernate
happen invisibly to the TOE, therefore
if a plaintext document is displayed
on the desktop during one of these
events, the user's data is assumed to
be not protected.

7

Memory Management -
unintentional shutdown

If the TOE is running and a plaintext
document is displayed on the screen
and an unintentional shutdown
occurs, there is a chance that
temporary files may still exist but all
volatile memory will be destroyed
over time (pending cold boot attack).

If the TOE is running and a plaintext
document is displayed on the desktop
and an unintentional shutdown
occurs, there is a chance that
temporary files may still exist but all
volatile memory will be destroyed.

When the user is finished working with sensitive data from an encrypted file, the file encryption
product must re-encrypt this data and is responsible for removing all keying materials and any
plaintext data from the encryption product’s volatile memory or any temporary files (non-volatile
memory) it creates during the decryption/encryption process. This functionality can be met by a
combination of the TOE and the Operational Environment.

10 The data that is to be secured by the encryption product is encrypted using a File Encryption Key
(FEK). A file encryptor may have zero or more Key Encryption Keys (KEKs) that protect (encrypt)
the FEK. The number of keys and the types of keys may vary, but the design should follow one of
the following models:

1. Condition a Password/Passphrase directly into a FEK

2. Condition a Password/Passphrase into a KEK that is used to encrypt the randomly
generated FEK directly or through a chaining of more than one KEK (these KEKs would be
randomly generated).

3. Use a software certificate or an external token (e.g. smartcard with a RSA or ECC key
pair) to protect the randomly generated FEK. The external token will later be referred to as
an “external entity” in this EP, and contains “external authorization factors.”

From a terminology standpoint, a KEK is either a symmetric key (as in case 2) or an asymmetric key
pair (as in case 3), and is used for both encryption and decryption of the FEK. If a distinction needs
to be made between the public key (which encrypts the FEK) and the private key (which decrypts
the FEK), this is done in the requirements and the assurance activities below.

11 Secure design and use of a file encryption product must be addressed on multiple levels. From a
software-design standpoint, the product must employ strong cryptography, robust error handling,
and ensure complete deletion of all keying materials and plaintext data stored in its volatile
memory and/or non-volatile memory (platform dependent). From a system standpoint, the
product may need to be configured to interact with other hardware or software (smart cards,
cryptographic libraries, etc.) that are required on the machine. Finally, from a user standpoint, the
product must be simple enough to operate to prevent the user from simply not encrypting their
files, and must include instructions to promote secure operational usage. If any of these
perspectives are ignored, then secure use of the file encryption product is compromised.
Therefore, this EP addresses both the cryptography and implementation requirements necessary to
design a secure product, as well as the user and configuration guidance necessary to securely
operate the file encryption software (for example, how to disable hibernation).

12 The TOE may be capable of supporting multiple users with different authorization factors, such that
different users are able to use the same platform and not be able to read each other's encrypted
files. The TOE may also support the ability for users to share an encrypted file without sharing an
authorization factor, but this is not required.

8

13 The vendor is required to provide configuration guidance (AGD_PRE, AGD_OPE) to correctly install

and administer the TOE for every operational environment supported (for example, for every OS
supported by the product).

14 Some products support the use of a recovery key that can be used to recover the encrypted data if
the FEK is lost. This functionality must be configurable so it can be turned off and cannot diminish
the overall strength of the FEK.

1.3.1.1 Authorization

15 One or more authorization factors must be established before data can be encrypted. This
authorization factor(s) must be presented to the file encryption product in order for the user to
request that the product decrypt the data. Authorization factors may be uniquely associated with
individual users or may be associated with a community of users. The TOE is not required to
support multiple types of authorization factors (e.g., both passphrases and external authorization
factors). If the ST author defines additional authorization factors, they must be fully documented
and cannot diminish the strength of the passphrase and/or external token authorization factors.

16 All compliant TOEs must provide (or support, in the case of an external authorization factor) at
least one of the following authorization factor options and be able to support the configuration of:

 A password/passphrase that supports at least a 64 character space,

 An external token (e.g. smartcard) or software capability (on the host, for instance)
containing a software certificate for the user with RSA or ECC key pairs may be used.
The implementation of this capability is largely outside the TOE boundary (depending on
the particulars of the implementation); however, the TOE must interface with the external
entity; be able to specify the use of RSA or ECC CDH to protect the FEK (even if this
specification is implicit rather than explicit); and be able to provide information to the
external entity in order to unlock the private key (if required by the external entity). The
computations involving the private key are performed by the cryptographic capability of
the external entity.

17 The password/passphrase authorization factors must be conditioned such that they are at least the
same size (bit length) as the key they are protecting.

18 A password/passphrase authentication factor with low entropy reduces the overall algorithm
strength. While this EP does not dictate how these authentication factors are created, a good
operational practice is for an administrator to generate the password or passphrase to ensure
sufficient entropy. Once the password/passphrase is entered by the user, it is conditioned by the
TOE prior to being provided as an encryption key. Passphrases are preferred over passwords, since
it is easier for users to remember and type in a sequence of words than recall a password and type
in a long string of random characters. The requirements in Appendix C for the selected
authorization factors should be included in the ST.

1.3.1.2 Encryption

19 One or more authorization factors must be established or entered before data can be encrypted or
decrypted, respectively. Entry of an incorrect authorization factor should not result in the user
seeing an improperly decrypted file. Entry of a correct or incorrect authorization factor should not

9

aid an attacker in guessing the KEK or FEK.

20 If the cryptography used to generate, handle, and protect keys or authorization factors is
sufficiently robust and if the implementation has no critical mistakes, the only option for an
adversary who obtains the encrypted information without the authorization factors or KEK must be
to exhaust the encryption key space of the KEK or FEK for data decryption. Note that if passwords
are used, a password might offer less strength than exhausting over the potential number of keys
for the data encryption algorithm (AES). Furthermore, if the password is the only authorization
factor unknown to the adversary, then the key space is the minimum of the work needed to
exhaust the KEK or FEK or to exhaust the number of possible passwords. As a consequence, the
next generation of this EP may require support for more robust authorization factors.

21 If external authorization factors are used, the external device generally requires some factor (such
as a PIN or password) to unlock the private key. In these cases, the PIN or password may have a
similar smaller exhaust space than the KEK or FEK, and this should be taken into account when
choosing a product that is conformant to this EP.

22 The data being secured by the file encryption product must be encrypted using a FEK. If the FEK is
protected by the KEK, the FEK will be generated using a Deterministic Random Bit Generator
(DRBG) that meets the requirements of FCS_RBG_EXT.1 (from the AS PP). The DRBG comprises an
entropy source and the DRBG algorithm. A properly seeded DRBG provides enough entropy to be
of equal or greater value than the exhaust space of the KEK.

1.3.1.3 Administration

23 The base requirements of the TOE do not require the TOE to maintain an administrative role (the
notion of an administrator of the TOE is that there exists a subset of the users of the TOE that have
greater “trust” than the general user population and who have specific responsibilities). Typically,
administrators possess privilege to invoke functionality on the TOE that is not available to general
users. For file encryption products, however, once the product is installed there should be little
need for administrative involvement.

1.3.1.4 Authorized Users

24 Authorized users are expected to adhere to the user guidance to minimize the risk of compromised
data. Authorization is determined by possessing and providing the TOE the correct authorization
factor(s) to enable the file encryption product’s functionality. It is the responsibility of the
authorized users of the host machine to secure and protect the host machine and authorization
factors for the TOE while it is officially in their possession. Authorized users will not leave/store
unprotected authorization factors (e.g., passwords, passphrases) in written or digital form on or
around the host machine. The user will be provided appropriate guidance to maintain a secure
TOE.

1.3.1.5 Data Authentication (optional)

25 Because modification of ciphertext data for certain modes of encryption will enable unidentified
plaintext manipulation, care must be taken by the TOE to mitigate against forged or maliciously
modified ciphertext data. The EP defines requirements for how the TOE must provide data
authentication services, allowing the TOE to implement authenticated block cipher, keyed hash

10

function or asymmetric signing features. Depending on the implementation, the TOE will be
responsible for meeting at least one of the aforementioned requirements. In all cases, unsuccessful
authentication of the data should not allow the user to see the decrypted ciphertext and
notification should be provided to the user if such an event were to occur.

26 A keyed hashing service may also be used to accomplish data authentication. This will involve using
an approved keyed hashing service in accordance with FCS_COP.1(4) and proper protection of the
File Authentication Key (FAK); the FAK being the secret value used as input to the keyed hash
function. FAKs should be numerically different from the FEK, but will be protected in all of the same
manners as the FEK. The primary requirement dictating implementation of data authentication
using a keyed hash function is FDP_AUT_EXT.2.

27 Lastly, asymmetric signing in conjunction with a secure hash function may be used to authenticate
the data. The implementation must use an approved signing algorithm in accordance with
FCS_COP.1(2) (from the AS PP) and an approved secure hashing function in accordance with
FCS_COP.1(3) (from the AS PP). The primary requirement addressing data authentication via
asymmetric signing is FDP_AUT_EXT.3.

1.3.2 The TOE and Its Supporting Environment

28 Since the TOE is purely a software solution, it must rely on the TOE Operational Environment
(system hardware, firmware, and operating system) for its execution domain and its proper usage.
The vendor is expected to provide sufficient installation and configuration instructions (for each
platform listed in the ST) to identify an Operational Environment with the necessary features and
to provide instructions for how to configure it correctly and securely.

29 The EP contains requirements (Section 4) that must be met by either the TOE or the platform on
which it operates. A “platform” is defined as a separate entity whose functions may be used by the
TOE, but is not part of the TOE. A third-party library used by the TOE is not considered part of the
TOE’s “platform”, but (for instance) cryptographic functionality that is built into an Operating
System on which the TOE executes can be considered part of the platform. Likewise, an external
entity (such as a smartcard) that performs cryptographic operations with respect to the FEK would
also be considered a part of the “TOE Platform”.

30 Requirements that can be satisfied by either the TOE or the platform are identified in Section 4.3.
The ST author will make the appropriate selection based on where that element is implemented. It
is allowable for some elements in a component to be implemented by the TOE, while other
elements in that same component may be implemented by the platform; in these cases, further
guidance is given in the application notes and assurance activities.

31 In some cases, the TOE vendor will have to provide specific configuration guidance for the
Operational Environment to enable the TOE to meet its security objectives. These include:

32 For non-mobile systems:

 Instructions for how to configure the operational environment so that the system powers
down completely after a period of user inactivity for every operating system that the
product supports;

11

 Instructions for how to disable power managed state (e.g., hibernate/sleep) capabilities

33 For mobile systems:

 Instructions for how to configure the operational environment to provide necessary
behavior in support of TOE functionality when transition to a locked state after inactivity
period and manually engaging the lock functionality.

 Instructions on how to configure the operational environment such that it is compliant
with the Mobile Device Fundamentals Protection Profile.

34 It should be noted that if the TOE possesses the capability to correctly protect information in one

or more of an underlying platform's power managed modes, they can use the FDP_PM_EXT.1
requirement in Appendix B.

35 Authorized users of the TOE are those users possessing valid authorization factors for the TOE.
While some of these functions specified in the EP might be considered “administrative” functions
for other types of TOEs, for file encryption products it is the expectation that all of these functions
can be performed by the end user of the software.

12

2 Security Problem Definition

36 The primary asset that is being protected is the sensitive user data stored on a system. The threat
model thus focuses on a host machine that has been compromised by an unauthorized user. This
section addresses threats to the TOE only.

2.1 Threats

37 A threat consists of a threat agent, an asset, and an adverse action of that threat agent on that
asset. The model in this EP only addresses risks that arise from the host machine being
compromised by an unauthorized user.

38 For this EP, the TOE is not expected to defend against all threats related to malicious software that
may reside in user data files. For instance, the TOE is not responsible for detecting malware in the
data selected by the user for encryption (that is a responsibility of the host environment). Once the
file encryption product is operational in a host system, the threats against the data from potentially
malicious software on the host are also not in the threat model of this EP. For example, there are
no requirements in this EP addressing a malicious host capturing a password-based authorization
factor, nor a malicious process reading the memory of an application program that is operating on
a decrypted file.

39 Note that this EP does not repeat the threats identified in the AS PP, though they all apply given
the conformance and hence dependence of this EP on the AS PP. Note also that while the AS PP
contains only threats to the ability of the TOE to provide its security functions, this EP focuses on
threats to resources in the operational environment. Together the threats of the AS PP and those
defined in this EP define the comprehensive set of security threats addressed by a file encryption
TOE.

40 Compromise of Keying MaterialAttacks against the encryption product could take several forms;
for example, if there is a weakness in the random number generation mixing algorithm or the data
sources used in random number generation are guessable, then the output may be guessable as
well. If an attacker can guess the output of the pseudorandom number generator (PRNG) at the
time an encryption key is made, then the output may be used to recreate the keying material and
decrypt the protected files. As the encryption program runs, it will store a variety of information in
memory. Some of this information, such as random bit generation (RBG) inputs, RBG output, copies
of the plaintext file, and other keying material, could be very valuable to an attacker who wishes to
decrypt an encrypted file. If the encryption product does not wipe these memory spaces
appropriately, an attacker may be able to recreate the encryption key and access encrypted files.

(T.KEYING_MATERIAL_COMPROMISE)

41 Brute Force AttackThe protection of the data involves encrypting said data assuming an attacker

may have significant computing resources at their disposal. Several ciphers have already been
broken through brute-force attacks because the length of the keys used in those ciphers was too
short to provide protection against a concerted computing effort to discover those keys. Because
protection of the data may rely on a chaining of keys and encryption mechanisms, there are many
opportunities for brute force attacks against each potential key in the chain, such that the weakest
link in the chain of factors/keys will determine the overall strength against a brute force attack.

13

42 (T.KEYSPACE_EXHAUST)

43 Plaintext CompromiseUnlike full disk encryption, selectable encryption products also need to

protect against data leaks to other applications on the machine. Many file creators and editors
store temporary files as the user is working on a file, and restore files if the machine experiences an
interrupt while a file is open. Any of these files, if not properly protected or deleted, could leak
information about a protected file to an attacker. Other applications might also access volatile or
non-volatile memory released by the file encryption product, and the software used to create files
prior to encryption may retain information about the file even after it has been encrypted. As the
user creates and saves a new document, the plaintext will be stored on the machine's hard drive.
An attacker could then search for the plaintext of the sensitive, encrypted information. An attacker
may not even have to access the encrypted file for the protected information to be compromised.
When the user wishes to encrypt the document, this plaintext file should be replaced with the new
encrypted version. For non-mobile devices, it is expected that if the volatile and/or non-volatile
memory space where the plaintext file was stored is merely released back to the machine without
being first wiped clean of the data that was stored there, then the information the user wishes to
protect will still be accessible. While protection of the encryption algorithm itself is vital, memory
must also be properly managed by the file encryption product or the TOE platform in order for
security to remain intact. For mobile devices, it is assumed that the File Encryption product will not
be responsible for providing memory management cleanup and the environment's platform has
met the Mobile Device Fundamentals Protection Profile.

44 Additionally, some encryption products offer to create backup files. These files are meant to be
used in the event an encrypted file becomes corrupted and incapable of being decrypted. Each
backup file is a valuable resource to protect information that the user cannot afford to lose;
however, it also may provide another route for an attacker to access the encrypted information. If
the backup file is insufficiently protected, then the attacker may choose to attempt to break into it,
rather than the copy of the encrypted file that the user would typically access.

(T.PLAINTEXT_COMPROMISE)

45 TSF FailureSecurity mechanisms of the TOE generally build up from a primitive set of mechanisms
(e.g., memory management, privileged modes of process execution) to more complex sets of
mechanisms. Failure of the primitive mechanisms could lead to a compromise in more complex
mechanisms, resulting in a compromise of the TSF.

46 (T.TSF_FAILURE)

47 Unauthorized Data AccessThe central functionality of the TOE is the protection of resources

under its control through encryption. In a shared resource environment, users on a system may
have access to administrative-level tools that are capable of over-riding a system’s access control
protections. Further, if the system were to be lost or the system’s storage device stolen, the
attacker could then look directly at the storage device using low-level forensic tools in an attempt
to access data for which they are not authorized. However, the need to protect the data in these

14

scenarios should not interfere with the data-owner’s (or another user that has been granted access
to those data) ability to read or manipulate the data.

(T.UNAUTHORIZED_DATA_ACCESS)

48 Flawed Authentication Factor VerificationWhen a user enters an authorization factor, the TOE
is required to ensure that the authorization factor is valid prior to providing any data to the user;
the purpose of verification is to ensure the FEK is correctly derived. If the data is decrypted with an
incorrectly derived FEK (the FEK is conditioned from the password/passphrase or is decrypted by
the KEK), then unpredictable data will be provided to the user. If verification is not performed in a
secure manner, keying material or user data may be exposed or weakened.

(T.UNSAFE_AUTHFACTOR_VERIFICATION)

49 Data Spoofing (optional)For certain modes of encryption, it is possible for a malicious person to

modify ciphertext data to force unintended modification to the underlying plaintext data, without
the user being notified. There are various failures that may occur on the part of the TOE, to include:
failure to verify the integrity of the data prior to decryption, failure to provide integrity on the
sensitive data, failure to use a cryptographic or secure hashing code and failure to differentiate the
File Authentication Key (FAK) from the FEK; the FAK is any secret value used as input to a keyed
hashing function or as part of an asymmetric authentication process.

(T.PLAINTEXT_DATA_SPOOFING)

2.2 Assumptions

50 The assumptions for the File Encryption are defined in Appendix A.1.2.

2.3 Organizational Security Policy

51 There are no additional OSPs for the File Encryption product.

15

3 Security Objectives

3.1 Security Objectives for the TOE

52 The Security Problem described in Section 2 will be addressed by a combination of cryptographic
capabilities. Compliant TOEs will provide security functionality that addresses threats to the TOE
and enforces policies that are imposed by law and regulation. The following subsections provide a
description of the security objectives required to meet the threats/policies previously discussed.
The description of these security objectives are in addition to that described in the AS PP.

53 Note: in each subsection below particular security objectives are identified (highlighted by O.) and
they are matched with the associated security functional requirements (SFRs) that provide the
mechanisms to satisfy the objectives.

54 The Security Objectives are the requirements for the Target of Evaluation (TOE) and for the

Operational Environment derived from the threats in Section 2.

3.1.1 Protection of Key Material (O.KEY_MATERIAL_PROTECTION)

55 The TOE must ensure that plaintext key material used in performing its operations is cleared once it
is no longer needed. Key material must be identified; its use and intermediate storage areas must
also be identified; and then those storage areas must be cleared in a timely manner and without
interruptions. For example, authorization factors are only needed until the KEK is formed; at that
point, volatile memory areas containing the authorization factors should be cleared.

56
[FCS_CKM_EXT.4, FDP_PRT_EXT.1 (optional: FDP_PM_EXT.1)]

3.1.2 Encryption Using a Strong FEK and KEK (O.FEK_SECURITY)

57 In order to ensure that brute force attacks are infeasible, the TOE must ensure that the
cryptographic strength of the keys and authorization factors used to generate and protect the keys
is sufficient to withstand attacks in the near-to-mid-term future. Password/passphrase complexity
and conditioning requirements are also levied to help ensure that a brute force attack against
these authorization factors (when used) has a similar level of resistance.

58
[FCS_CKM_EXT.2, FMT_SMF.1, FCS_COP.1(1), FCS_COP.1(5), FCS_IV_EXT.1, FPT_FEK_EXT.1
(optional: FCS_COP.1(6)) (selectable: FCS_CKM.1, FCS_CKM_EXT.1, FCS_COP.1(4)]

3.1.3 Removal of Plaintext Data (O.WIPE_MEMORY)

59 To address the threat of unencrypted copies of data being left in non-volatile memory or
temporary files where it may be accessed by an unauthorized user, the TOE will ensure that
plaintext data it creates is securely erased when no longer needed. The TOE’s responsibility is to
utilize the appropriate TOE platform method for secure erasure, but the TOE is not responsible for
verifying that the secure erasure occurred as this will be the responsibility of the TOE platform.

60
[FDP_PRT_EXT.1 (optional: FDP_PRT_EXT.2)]

3.1.4 Protection of Data (O.AUTHORIZATION, O.PROTECT_DATA)

61 The TOE will encrypt data to protect the data from unauthorized access. Encrypting the file or set

16

of files will protect the user data even when low-level tools that bypass operating system
protections such as discretionary and mandatory access controls are available to an attacker.
Users that are authorized to access the data must provide authorization factors to the TOE in order
for the data to be decrypted and provided to the user.

62
[FCS_CKM_EXT.1, FDP_PRT_EXT.1, FMT_SMF.1, FCS_COP.1(1) (optional: FDP_AUT_EXT.2,
FDP_AUT_EXT.3) (selectable: FCS_KM_EXT.1, FCS_COP.1(4), FCS_CKM.1(A))]

3.1.5 Safe Authentication Factor Verification
(O.SAFE_AUTHFACTOR_VERIFICATION)

63 In order to avoid exposing information that would allow an attacker to compromise or weaken any
factors in the chain keys generated or protected by the authorization factors, the TOE will verify
the valid authorization factor prior to the FEK being used to decrypt the data being protected.

64
65 [FIA_AUT_EXT.1 (selectable: FIA_FCT_EXT.1(1), FIA_FCT_EXT.1(2))]
66

3.1.6 Data Authentication (O.DATA_AUTHENTICATION)

67 For certain encryption modes, it is feasible to maliciously modify the ciphertext data to cause
unintended modifications to plaintext data, without user notification. The TOE may provide a
method for authenticating the sensitive data and using an approved data authentication method.

68
69 [FCS_CKM_EXT.4 (optional: FDP_AUT_EXT.1, FDP_AUT_EXT.2, FDP_AUT_EXT.3, , FCS_CKM_EXT.5)]

3.2 Security Objectives for the TOE’s Operational Environment

70 The objectives that are required to be met by the TOE’s operational environment are defined in
Appendix A.

17

4 Security Functional Requirements

71 The Security Functional Requirements included in this section are derived from Part 2 of the
Common Criteria for Information Technology Security Evaluation, Version 3.1, Revision 4 (the CC),
with additional extended functional components. The Security Assurance Requirements included
in this section are derived from Part 3 of the CC. Supplemental Guidance is provided in the form of
Assurance Activities associated with the functional requirements in Sections 4.2 and 4.3, as well as
with the Security Assurance Requirements themselves in Section 4.4.

4.1 Conventions
The CC defines operations on Security Functional Requirements: assignments, selections,
assignments within selections and refinements. This document uses the following font conventions
to identify the operations defined by the CC:

 Refinement operation (denoted by bold text): used to add details to a requirement, and
thus further restricts a requirement.

 Selection (denoted by underlined text): used to select one or more options provided by the
[CC] in stating a requirement.

 Assignment operation (denoted by italicized text): used to assign a specific value to an
unspecified parameter, such as the length of a password.

 Assignment within a selection (denoted by italicized, underlined text): used to make an
assignment within the context of a selection

 Iteration operation: are identified with a number inside parentheses (e.g. "(1)")

4.2 Security Functional Requirements for the File Encryption Application (TOE)

72 As indicated in Section 1.3.2, security functional requirements in the main body of the EP are
divided into those that must be satisfied by the file encryption application (the TOE), and those that
must be satisfied by either the TOE or the platform on which it runs. This section contains the
requirements that must be met by the TOE.

4.2.1 Class: Cryptographic Support (FCS)

Cryptographic Key Management (FCS_CKM)

73 Conformant implementations will use a File Encryption Key (FEK) conditioned from a
password/passphrase, or randomly generated and protected by a Key Encryption Key (KEK). A KEK
is either produced by the TOE, or composed of a public/private key pair in hardware (e.g., a
smartcard device) or software (service on the host) external to the TOE (the latter are referred to
as “external entities” in this EP, and contain “external authorization factors”). If the FEK are
randomly generated, then they must be generated by the TOE as specified in FCS_CKM_EXT.2, and
support the use of a KEK as specified in this section. However, depending on the KEK(s) supported,
either the TOE or the TOE platform (or some combination of the two) will implement the lower-
level functionality, so those capabilities are specified in Section 4.2. If a FEK and KEK are used,
authentication factors (especially the Password Authentication Factor) can be changed without
having to re-encrypt all of the user data on the device.

18

FCS_CKM_EXT.2 Cryptographic key generation (FEK)

FCS_CKM_EXT.2.1

FCS_CKM_EXT.2.2

FCS_CKM_EXT.2.3

The TSF shall generate FEK cryptographic keys
[selection:

using a Random Bit Generator as specified in FCS_RBG_EXT.1 (from the AS PP)
and with entropy corresponding to the security strength of AES key sizes of
[selection: 128 bit, 256 bit];

conditioned from a password/passphrase as defined in FCS_CKM.1(A)
]

The TSF shall create a unique FEK for each file (or set of files) using the
mechanism on the client as specified in FCS_CKM_EXT.2.1.

The FEKs must be generated by the TOE.

Application Note:

74 For the first selection, the key generation capability of the TOE uses a RBG implemented on the TOE

device (FCS_RBG_EXT.1 from the AS PP). Either 128-bit or 256-bit (or both) are allowed for the FEK;
the ST author makes the selection appropriate for the device. For the second selection, the key is
generated by the conditioning of a password/passphrase.

75
76 FCS_CKM_EXT.2.2 requires that each resource to be encrypted has a unique FEK, and that this FEK is

generated by the TSF. If the encrypted resource is a set of files encrypted under one FEK, additional
requirements on the initialization vectors and cipher modes must be adhered to in Section 4.2.

Assurance Activities:

Activity Assurance Activity

TSS FCS_CKM_EXT.2.1: The evaluator shall review the TSS to determine that a
description covering how and when a FEK are generated exists. The description
must cover all environments on which the TOE is claiming conformance, and
include any preconditions that must exist in order to successfully generate the
FEK. The TSS is checked to ensure that the description of how the FEK are
generated is consistent with the instructions in the AGD guidance, and any
differences that arise from different platforms are taken into account. This
assurance activity may be combined with activities for FCS_COP.1(5) and
FCS_CKM_EXT.2.1.

For the first selection, the evaluator shall review the TSS to determine that it

19

describes how the functionality described by FCS_RBG_EXT.1 (from the AS PP)
is invoked to generate FEK. To the extent possible from the description of the
RBG functionality in FCS_RBG_EXT.1 (from the AS PP), the evaluator shall
determine that the key size being requested is identical to the key size and
mode to be used for the decryption/encryption of the user data
(FCS_COP.1(1)).

For the second selection, password/passphrase-based factors, the examination
of the TSS section is performed as part of FCS_CKM.1(A) assurance activities.

FCS_CKM_EXT.2.2: The evaluator shall examine the TSS to determine that it
describes how a FEK is created for a protected resource and associated with
that resource; protection of the FEK itself is covered by FIA_AUT_EXT.1 and
FCS_COP.1(5). The evaluator confirms that—per this description—the FEK is
unique per resource (file or set of files) and that the FEK is created using the
mechanisms specified in).

FCS_CKM_EXT.2.3: The evaluator shall review the TSS to verify it details that
the FEKs are generated on the client machine and are not generated on an
external server.

Guidance The evaluator shall review the instructions in the AGD guidance to determine
that any explicit actions that need to be taken by the user to create a FEK
exist—taking into account any differences that arise from different platforms—
and are consistent with the description in the TSS.

Tests None

4.2.2 Class: User Data Protection (FDP)

77 This stipulates encryption, decryption and authentication of user-selected files or sets of files.
There are several more requirements in Section 4.2 and Appendix B that also address plaintext
data being successfully removed and sharing resources between users. There are requirements in
Appendix C discussing specific methods for authenticating the data, as this is dependent on the
choice of encryption mode.

Extended: Protection of Selected User Data (FDP_PRT_EXT)

FDP_PRT_EXT.1 Extended: Protection of Selected User Data

FDP_PRT_EXT.1.1

The TSF shall perform encryption and decryption of the user-selected file
(or set of files) in accordance with FCS_COP.1(1).

Application Note:

20

78 This is the primary requirement for encrypting and decrypting the protected resources (files and sets
of files). Apart from the actual encryption and decryption of the resources, there are two other
functions specified by this requirement.

Assurance Activities:

Activity Assurance Activity

TSS FDP_PRT_EXT.1.1: The evaluator shall examine the TSS to determine that it
lists each type of resource that can be encrypted (e.g., file, directory) and what
“encrypted” means in terms of the resource (e.g., “encrypting a directory”
means that all of the files contained in the directory are encrypted, but the
data in the directory itself (which are filenames and pointers to the files) are
not encrypted). The evaluator shall also confirm that the TSS describes how
each type of resource listed is encrypted and decrypted by the TOE. The
evaluator shall ensure that this description includes the case where an existing
file or set of files is encrypted for the first time; a new file or set of files is
created and encrypted; an existing file or set of files is re-encrypted (that is, it
had been initially encrypted; it was decrypted (by the TOE) for use by the user,
and is then subsequently re-encrypted); and corresponding decryption
scenarios. If other scenarios exist due to product implementation/features, the
evaluator shall ensure that those scenarios are covered in the TSS as well.

Guidance 79 If the TOE creates temporary objects and these objects can be protected
through administrative measures (e.g., the TOE creates temporary files in a
designated directory that can be protected through configuration of its access
control permissions), then the evaluator shall check the Operational Guidance
to ensure that these measures are described.

80
81 If there are special measures necessary to configure the method by which the

file or set of files are encrypted (e.g., choice of algorithm used, key size, etc.),
then those instructions shall be included in the Operational Guidance and
verified by the evaluator. In these cases, the evaluator checks to ensure that
all non-TOE products used to satisfy the requirements of the ST that are
described in the Operational Guidance are consistent with those listed in the
ST, and those tested by the assurance activities of this EP.

Tests
The evaluator shall also perform the following tests. All instructions for
configuring the TOE and each of the environments must be included in the
Operational Guidance and used to establish the test configuration.

For each resource and decryption/encryption scenario listed in the TSS, the
evaluator shall ensure that the TSF is able to successfully encrypt and decrypt
the resource using the following methodology:

● Monitor the temporary resources being created (if any) and deleted by the
TSF—the tools used to perform the monitoring (e.g., procmon for a Windows

21

system) shall be identified in the test report. The evaluator shall ensure that
these resources are consistent with those identified in the TSS, and that they
are protected as specified in the Operational Guidance and are deleted when
the decryption/encryption operation is completed.

4.2.3 Class: Security Management (FMT)

82 The primary intent in this section is to call out critical activities that must be performed by the user
(or administrator) in order to use the TOE in a safe manner. The critical activities are defined as
those that reference the Cryptographic Support items in Section 4.2.1.

83
Specification of Management Functions (FMT_SMF)

FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:
[selection:

a) change password/passphrase authentication credential;
b) disable key recovery functionality;
c) [assignment: no other function; configure password/passphrase complexity

setting; configure cryptographic functionality; other management functions
provided by the TSF]
].

Application Note:

84 The intent of this requirement is to express the management capabilities that may be included in
the TOE. Several common options are given:

 If password or passphrase authorization factors are implemented by the TOE, then the

appropriate “change” selection must be included, along with FIA_FCT_EXT.1(2) from Appendix
C.

 If the TOE provides for a password/passphrase complexity setting, then “configure
password/passphrase complexity setting” will be included, and the specifics of the functionality
offered can either be written from the requirement as bullets points, or included in the TSS.

 If the TOE provides configurability of the cryptographic functions (for example, key size of the
FEK)—even if the configuration is the form of parameters that may be passed to cryptographic
functionality implement on the TOE platform--then “configure cryptographic functionality” will
be included, and the specifics of the functionality offered can either be written in this
requirement as bullet points, or included in the TSS.

 If the TOE does include a key recovery function, the TOE must provide the capability for the user
to turn this functionality off so that no recovery key is generated and no keys are permitted to
be exported.

 If “other management functions” are assigned, a validation authority must be consulted to

22

ensure the assurance activities and other functionality requirements that may be needed are
appropriately specified so that the ST can claim conformance to this EP.

Assurance Activities:

85 The assurance activities for this component will be driven by the selections made by the ST author.

This section describes assurance activities for all possible selections in an ST; it should be
understood that if a capability is not selected in the ST, the noted assurance activity does not need
to be performed. The following sections are divided up into “Required Activities” and “Conditional
Activities” for ease of reference.

Activity Assurance Activity

TSS Conditional Activities: The evaluator shall examine the TSS to ensure that it
describes the sequence of activities that take place from an implementation
perspective when this activity is performed (for example, how it determines
which resources are associated with the KEK, the decryption and re-encryption
process), and ensure that the KEK and FEK are not exposed during this change.

Cryptographic Configuration: None for this requirement.

Disable Key Recovery: If the TOE supports key recovery, this must be stated in
the TSS. The TSS shall also describe how to disable this functionality. This
includes a description of how the recovery material is provided to the recovery
holder. The guidance for disabling this capability shall be described in the AGD
documentation.

Guidance Conditional Activities: The evaluator shall examine the Operational Guidance
to ensure that it describes how the password/passphrase-based authorization
factor is to be changed.
Cryptographic Configuration: The evaluator shall determine from the TSS for
other requirements (FCS_*, FDP_PRT_EXT, FIA_AUT_EXT) what portions of the
cryptographic functionality are configurable. The evaluator shall then review
the AGD documentation to determine that there are instructions for
manipulating all of the claimed mechanisms.

Tests Conditional Activities: The evaluator shall set all length and complexity
settings offered by the TOE. The evaluator shall then attempt to enter values
that violate those settings and ensure they are not accepted.

Disable Key Recovery: If the TOE provides key recovery capability, then the
evaluator shall devise a test that ensures that the key recovery capability has
been or can be disabled following the guidance provided by the vendor.

Cryptographic Configuration: Testing for this activity is performed for other
components in this EP.

4.2.4 Class: Protection of the TSF (FPT)

23

 Extended: Protection of FEK (FPT_FEK_EXT)

FPT_FEK_EXT.1 File Encryption Key (FEK) Support

FPT_FEK_EXT.1.1

The TSF shall [selection:
 Never store a FEK conditioned from a Password/Passphrase in

non-volatile memory;

 Store a FEK in Non-Volatile memory conformant with
FPT_KYP_EXT.1

].

Application Note:

86 FPT_FEK_EXT.1.details how a FEK may be directly conditioned from a password/passphrase or may
be a randomly generated from an approved randomizer.

Activity Assurance Activity

TSS In TOEs where the FEK is protected with a KEK, the FEK will need to be
encrypted and stored in non-volatile memory when not being used to
decrypt/encrypt a file. (Typically, the encrypted FEK is stored in the meta-data
of the encrypted file(s).) The evaluator shall examine the TSS to ensure that it
describes how the FEK is encrypted, both after its initial creation and after it
has been decrypted for use (note that in the entirely likely possibility that the
FEK is not re-encrypted, then this case must be indicated in the TSS and the
description for FCS_CKM_EXT.4 will cover disposal of the plaintext FEK). The
evaluator shall further check to ensure that the TSS describes how the FEK and
any other associated meta-data necessary to decrypt the file or set of files are
associated with the resource. This description can be combined with the
description required for FCS_COP.1(5).

Guidance None

Tests Test 1: An example ciphertext file generated via the TOE shall be provided to
the evaluator with the accompanying FEK and prerequisite authorization
information used for encryption. The evaluator will use the TOE in conjunction
with a debugging or forensics utility to attempt a decrypt of the ciphertext file
using the provided authorization information. The evaluator will then
terminate processing of the TOE and perform a search through non-volatile
memory using the provided FEK string. The evaluator must document each
command, program or action taken during this process, and must confirm that
the FEK was never written to non-volatile memory. This test must be performed
three times to ensure repeatability. If during the course of this testing the
evaluator finds that the FEK was written to non-volatile memory, they should

24

be able to identify the cause (i.e. the TOE wrote the FEK to disk, the TOE
platform dumped volatile memory as a page file, etc), and document the
reason for failure to comply with the requirement.

4.2.5 Class: Protection of the TSF (FPT)

FPT_KYP_EXT.1 Extended: Protection of Key and Key Material (FPT_KYP_EXT)

FPT_KYP_EXT.1.1

The TSF shall [selection: not store keys in non-volatile memory, only store
keys in non-volatile memory when wrapped, as specified in FCS_COP.1(5
unless the key meets any one of following criteria [selection:

 The plaintext key is not part of the key chain as specified in
FCS_KYC_EXT.1.

 The plaintext key will no longer provide access to the encrypted
data after initial provisioning.

 The plaintext key is a key split that is combined as specified in
FCS_SMC_EXT.1, and the other half of the key split is either
[selection: wrapped as specified in FCS_COP.1(5) or derived and
not stored in non-volatile memory.]

 The plaintext key is stored on an external storage device for use as
an authorization factor.

 The plaintext key is used to wrap a key as specified in FCS_COP.1(5)
that is already wrapped as specified in FCS_COP.1(5).]

].

Application Note:

The plaintext key storage in non-volatile memory is allowed for several reasons. If the keys exist
within protected memory that is not user accessible on the TOE or OE, the only methods that allow
it to play a security relevant role for protecting the FEK is if it is a key split or providing additional
layers of wrapping or encryption on keys that have already been protected.

Activity Assurance Activity

TSS The evaluator shall verify the TSS for a high level description of method used to
protect keys stored in non-volatile memory.
The evaluator shall verify the TSS to ensure it describes the storage location of
all keys and the protection of all keys stored in non-volatile memory. The
description of the key chain shall be reviewed to ensure FCS_COP.1(5) is
followed for the storage of wrapped or encrypted keys in non-volatile memory
and plaintext keys in non-volatile memory meet one of the criteria for storage.

25

Guidance None

Tests None

4.3 Security Functional Requirements for the Software File Encryption
Application or Client Platform

87 As indicated in Section 1.3.2, security functional requirements in the main body of the EP are
divided into those that must be satisfied by the file encryption application (the TOE), and those that
must be satisfied by either the TOE or the platform on which it runs. This section contains
requirements that must be met, but they can either be met by the TOE or the platform on which
the TOE operates. Assurance activities are therefore constructed such that those that apply when
the requirements are met by the TOE are identified, and those that are performed when the
platform on which the TOE operates implements the required functionality are likewise identified.
If a test or documentation assurance activity is specified that is not specifically associated with
either the TOE or the TOE platform, then it applies regardless of where the requirement is
implemented.

4.3.1 Class: Cryptographic Support (FCS)

FCS_CKM_EXT.4 Extended: Cryptographic Key Destruction

FCS_CKM_EXT.4.1 FCS_CKM_EXT.4.1 The application shall [selection:

 invoke platform-provided key destruction;

implement key destruction using [selection:

 For volatile memory, the erasure shall be executed by a single direct
overwrite [selection: consisting of a pseudo-random pattern using the
TSF’s RBG, consisting of a pseudo-random pattern using the host
platform’s RBG, consisting of zeroes] following by a read-verify.

 For non-volatile storage, the erasure shall be executed by:

A [selection: single, three or more times] overwrite of key data
storage location consisting of [selection: a pseudo random pattern
using the TSF’s RBG (as specified in FCS_RBG_EXT.1, a pseudo-
random pattern using the host platform’s RBG, a static pattern],
followed by a [selection: read-verify, none]. If read-verification of
the overwritten data fails, the process shall be repeated again;

] that meets the following: [selection: NIST SP800-88, no standard]

26

] for destroying all plaintext keying material and cryptographic security
parameters when no longer needed.

Application Note:

For the purposes of this requirement, plaintext keying material refers to authentication data,
passwords, symmetric keys, data used to derive keys, etc.

For Mobile Devices, it is assumed that the TOE will call the platform for the memory management
calls (and the Platform meets the MDF PP) to destroy the plaintext keying material when it is no
longer necessary, including when the TOE is powered down and when the wipe function is
performed. In the future, “no longer needed”, will include keys generated for protecting sensitive
data received while in a locked state.

The destruction indicated above applies to each intermediate storage area for plaintext
key/cryptographic critical security parameter (i.e., any storage, such as memory buffers, that is
included in the path of such data) upon the transfer of the key/cryptographic critical security
parameter to another memory location.

Assurance Activities:

Activity Assurance Activity

TSS If the platform provides the key destruction, then the evaluator shall examine
the TSS to verify that it describes how the key destruction functionality is
invoked.

If the application invokes key destruction, the evaluator shall check to ensure
the TSS describes each of the secret keys (keys used for symmetric encryption
and/or data authentication), private keys, and CSPs used to generate key;
when they are zeroized (for example, immediately after use, on system
shutdown, etc.); and the type of zeroization procedure that is performed
(overwrite with zeros, overwrite three times with random pattern, etc.). If
different types of memory are used to store the materials to be protected, the
evaluator shall check to ensure that the TSS describes the zeroization
procedure in terms of the memory in which the data are stored (for example,
"secret keys stored on flash are zeroized by overwriting once with zeros, while
secret keys stored on the internal hard drive are zeroized by overwriting three
times with a random pattern that is changed before each write").

Guidance None

Tests These tests are only for key destruction provided by the application:

Test 1: For each type of authorization service, encryption mode and encryption
operation, a known authorization factor, FEK and KEK must be provided to the

27

evaluator with an associated ciphertext data set (e.g. if a passphrase is used to
create a KEK, then the ciphertext containing the FEK as well as the KEK itself
must be provided to the evaluator. If a passphrase is used to generate a FEK,
then the ciphertext file encrypted with the FEK as well as the FEK must be
provided to the evaluator.) The evaluator will use the TOE in conjunction with a
debugging or forensics utility to attempt to authorize themselves, resulting in
the generation of a FEK or decryption of a FEK. The evaluator will ascertain
from the TSS what the vendor defines as “no longer needed” and execute the
sequence of actions via the TOE to invoke this state. At this point, the evaluator
should take a dump of volatile memory and search the retrieved dump for the
provided authorization credentials, KEKs or FEKs (e.g. if the password was
“PaSSw0rd”, perform a string search of the forensics dump for “PaSSw0rd”).
The evaluator must document each command, program or action taken during
this process, and must confirm that no plaintext keying material resides in
volatile memory. The evaluator must perform this test three times to ensure
repeatability. If during the course of this testing the evaluator finds that keying
material remains in volatile memory, they should be able to identify the cause
(i.e. execution of the grep command for “PaSSw0rd” caused a false positive)
and document the reason for failure to comply with this requirement. The
evaluator will repeat this same test, but looking for keying material in non-
volatile memory -- in some cases, the non-volatile memory testing may be
satisfied by other assurance activities (see FCS_CKM_EXT.1 and
FPT_FEK_EXT.1).

Test 2: For each data authentication mechanism supported by the TOE, the
evaluator must be provided known keying material with the associated
ciphertext file(s). The evaluator will attempt to authenticate the ciphertext
data using the known key. The evaluator will ascertain from the TSS what the
vendor defines as “no longer needed” and execute the sequence of actions via
the TOE to invoke this state. Once this state is attained, the evaluator shall
take a forensics dump of volatile memory and perform a search for the
authentication keying material (i.e. if a FAK is used as input to an HMAC, then
the evaluator will look for the FAK string in the forensics dump). The evaluator
must document each command, program or action taken during this process,
and must confirm that no plaintext keying material resides in volatile memory.
The evaluator must perform this test three times to ensure repeatability. If
during the course of this testing the evaluator finds that keying material
remains in volatile memory, they should be able to identify the cause and
document the reason for failure to comply with this requirement. The evaluator
will repeat this same test, but looking for keying material in non-volatile
memory -- in some cases, the non-volatile memory testing may be satisfied by
other assurance activities (see FCS_CKM_EXT.4).

Cryptographic Operation (FCS_COP)

This requirement is used to specify the symmetric decryption/encryption algorithm that is used to

28

encrypt and decrypt the data.

FCS_COP.1(1) Cryptographic operation (Data Encryption)

FCS_COP.1.1(1)

Refinement: The application shall [selection: implement platform-provided AES
encryption, implement AES encryption] shall perform data encryption and
decryption in accordance with a specified cryptographic algorithm AES used in
[selection:
 CBC (as defined in NIST SP 800-38A);
 XTS (as defined in NIST SP 800-38E)
] mode and cryptographic key sizes
[selection:
 128 bits;
 256 bits
].

Application Notes:

88 The intent of this requirement is to specify the approved AES modes that the ST author may select

for AES encryption of the appropriate information on the file encryption software. The first selection
indicates whether the TOE or the platform performs the actual cryptographic operations. For the
second selection, the ST author should indicate the mode or modes supported by the TOE/platform
implementation. The third selection indicates the key size to be used, which is identical to that
specified for FCS_CKM_EXT.1. The fourth selection must agree with the mode or modes chosen in
the first selection. If multiple modes are supported, it may be clearer in the ST if this component was
iterated.

89 The CBC encryption mode may also be used to encrypt sets of files and must follow NIST SP 800-38
A to use unique IVs for each file that is encrypted.

90 Future versions of this EP may include new cryptographic modes as they are reviewed and approved

by NIST.

Assurance Activities:

Activity Assurance Activity

TSS
Requirement met by the platform

If the platform provides the AES symmetric encryption/decryption, then the
evaluator shall examine the TSS to verify that it describes how the key
destruction encryption/decryption is invoked.

Requirement met by the TOE

91 If multiple modes are supported, the evaluator examines the TSS and guidance

29

documentation to determine how a specific mode/key-size is chosen by the end
user. The evaluator then tests each mode/key size combination in the manner
found in the following sections, as appropriate.

Guidance None

Tests These tests are only for data encryption provided by the application:

AES-CBC Tests

AES-CBC Known Answer Tests
There are four Known Answer Tests (KATs), described below. In all KATs, the
plaintext, ciphertext, and IV values shall be 128-bit blocks. The results from
each test may either be obtained by the evaluator directly or by supplying the
inputs to the implementer and receiving the results in response. To determine
correctness, the evaluator shall compare the resulting values to those obtained
by submitting the same inputs to a known good implementation.

KAT-1. To test the encrypt functionality of AES-CBC, the evaluator shall supply
a set of 10 plaintext values and obtain the ciphertext value that results from
AES-CBC encryption of the given plaintext using a key value of all zeros and an
IV of all zeros. Five plaintext values shall be encrypted with a 128-bit all-zeros
key, and the other five shall be encrypted with a 256-bit all-zeros key.

To test the decrypt functionality of AES-CBC, the evaluator shall perform the
same test as for encrypt, using 10 ciphertext values as input and AES-CBC
decryption.

KAT-2. To test the encrypt functionality of AES-CBC, the evaluator shall supply
a set of 10 key values and obtain the ciphertext value that results from AES-
CBC encryption of an all-zeros plaintext using the given key value and an IV of
all zeros. Five of the keys shall be 128-bit keys, and the other five shall be 256-
bit keys.

To test the decrypt functionality of AES-CBC, the evaluator shall perform the
same test as for encrypt, using an all-zero ciphertext value as input and AES-
CBC decryption.

KAT-3. To test the encrypt functionality of AES-CBC, the evaluator shall supply
the two sets of key values described below and obtain the ciphertext value that
results from AES encryption of an all-zeros plaintext using the given key value
and an IV of all zeros. The first set of keys shall have 128 128-bit keys, and the
second set shall have 256 256-bit keys. Key i in each set shall have the leftmost
i bits be ones and the rightmost N-i bits be zeros, for i in [1,N].

To test the decrypt functionality of AES-CBC, the evaluator shall supply the two

30

sets of key and ciphertext value pairs described below and obtain the plaintext
value that results from AES-CBC decryption of the given ciphertext using the
given key and an IV of all zeros. The first set of key/ciphertext pairs shall have
128 128-bit key/ciphertext pairs, and the second set of key/ciphertext pairs
shall have 256 256-bit key/ciphertext pairs. Key i in each set shall have the
leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1,N]. The
ciphertext value in each pair shall be the value that results in an all-zeros
plaintext when decrypted with its corresponding key.

KAT-4. To test the encrypt functionality of AES-CBC, the evaluator shall supply
the set of 128 plaintext values described below and obtain the two ciphertext
values that result from AES-CBC encryption of the given plaintext using a 128-
bit key value of all zeros with an IV of all zeros and using a 256-bit key value of
all zeros with an IV of all zeros, respectively. Plaintext value i in each set shall
have the leftmost i bits be ones and the rightmost 128-i bits be zeros, for i in
[1,128].

To test the decrypt functionality of AES-CBC, the evaluator shall perform the
same test as for encrypt, using ciphertext values of the same form as the
plaintext in the encrypt test as input and AES-CBC decryption.

AES-CBC Multi-Block Message Test
The evaluator shall test the encrypt functionality by encrypting an i-block
message where 1 < i <=10. The evaluator shall choose a key, an IV and
plaintext message of length i blocks and encrypt the message, using the mode
to be tested, with the chosen key and IV. The ciphertext shall be compared to
the result of encrypting the same plaintext message with the same key and IV
using a known good implementation.

The evaluator shall also test the decrypt functionality for each mode by
decrypting an i-block message where 1 < i <=10. The evaluator shall choose a
key, an IV and a ciphertext message of length i blocks and decrypt the
message, using the mode to be tested, with the chosen key and IV. The
plaintext shall be compared to the result of decrypting the same ciphertext
message with the same key and IV using a known good implementation.

AES-CBC Monte Carlo Tests
The evaluator shall test the encrypt functionality using a set of 200 plaintext,
IV, and key 3-tuples. 100 of these shall use 128 bit keys, and 100 shall use 256
bit keys. The plaintext and IV values shall be 128-bit blocks. For each 3-tuple,
1000 iterations shall be run as follows:

Input: PT, IV, Key
for i = 1 to 1000:
if i == 1:

31

CT[1] = AES-CBC-Encrypt(Key, IV, PT)
PT = IV
else:
CT[i] = AES-CBC-Encrypt(Key, PT)
PT = CT[i-1]

The ciphertext computed in the 1000th iteration (i.e., CT[1000]) is the result for
that trial. This result shall be compared to the result of running 1000 iterations
with the same values using a known good implementation.

The evaluator shall test the decrypt functionality using the same test as for
encrypt, exchanging CT and PT and replacing AES-CBC-Encrypt with AES-CBC-
Decrypt.

XTS-AES Monte Carlo Test
The evaluator shall test the encrypt functionality of XTS-AES for each
combination of the following input parameter lengths:
256 bit (for AES-128) and 512 bit (for AES-256) keys

Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall be a
non-zero integer multiple of 128 bits, if supported. One of the data unit lengths
shall be an integer multiple of 128 bits, if supported. The third data unit length
shall be either the longest supported data unit length or 216 bits, whichever is
smaller.

using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples
and obtain the ciphertext that results from XTS-AES encrypt.

The evaluator may supply a data unit sequence number instead of the tweak
value if the implementation supports it. The data unit sequence number is a
base-10 number ranging between 0 and 255 that implementations convert to a
tweak value internally.

The evaluator shall test the decrypt functionality of XTS-AES using the same
test as for encrypt, replacing plaintext values with ciphertext values and XTS-
AES encrypt with XTS-AES decrypt.

FEK decryption and encryption (Key Wrapping)

92 This requirement specifies the operations to be used if the FEK are encrypted and decrypted using a
KEK. If intermediate keys are used, the ST author iterates this requirement to specify the operations
used in those cases.

FCS_COP.1(5) Cryptographic operation (Key Wrapping)

FCS_COP.1.1(5) Refinement: The application shall [selection: use platform-provided

32

functionality to perform Key Wrapping, implement functionality to perform Key
Wrapping] in accordance with a specified cryptographic algorithm
[selection:
 AES Key Wrap;
 AES Key Wrap with Padding;
 RSA using the KTS-OAEP-basic scheme;
 RSA using the KTS-OAEP-receiver-confirmation scheme;
 ECC CDH
]
and the cryptographic key size
[selection:
 128 bits (AES), 256 bits (AES), 2048 (RSA), 4096 (RSA), 256-bit prime
modulus (ECC CDH), 384-bit prime modulus (ECC CDH)
]
that meet the following:
[selection:
 “NIST SP 800-38F” for Key Wrap (section 6.2) and Key Wrap with Padding
(section 6.3);
 “NIST SP 800-56B” for RSA using the KTS-OAEP-basic (section 9.2.3) and KTS-
OAEP-receiver-confirmation (section9.2.4) scheme, “NIST SP 800-56A rev 2” for
ECC CDH (sections 5.6.1.2 and 6.2.2.2)
].

Application Note:

93 This requirement specifies the protection of the FEK (that is, protecting it using the KEK specified in
FCS_CKM_EXT.1) and unwrapping/decryption of the FEK with the KEK so that it may be used to
encrypt or decrypt files or set of files.

94 This requirement allows the TSF to control how the FEK is encrypted and decrypted. When
encrypting the FEK, the TSF may pass the FEK to the operational environment with various amounts
of information. For instance, if 128-bit AES Key Wrap is being used, the TSF may invoke an interface
specifying these parameters. If RSA is being used, the FEK may invoke a crypto-library and pass the
private key and the FEK to the crypto-library; or it may invoke crypto-functionality on a smart card
that contains the private key, so the TSF only passes the FEK.

95 In the first selection, the ST author chooses the entity that performs the decryption/encryption of
the FEK. If one operation is done by the TOE platform (e.g., decryption of the FEK) and one
operation is done by the TSF (e.g., encryption of the FEK), the ST author should iterate and refine
the requirement to reflect this functionality. Iteration can also be used if the TOE supports either
option; in this case the assurance activities will be performed for all claimed modes.

96 In the second selection, the ST author chooses the method by which the KEK is used to encrypt the
FEK:

 Using one of the two AES-based Key Wrap methods specified in NIST SP 800-38F;

 Using one of the two the KTS-OAEP schemes for RSA as described in NIST SP 800-56B (KTS-
OAEP-basic described in section 9.2.3

33

 Using ECC CDH as described in NIST SP 800-56A section 6.2.2.2. In this case, the ST author also
incorporates FCS_CKM.1(1) in Appendix C to ensure the ephemeral keys to be used in the
exchange with the external entity are generated. Any key wrap mode included in NIST SP 800-
38 F is allowed.

97 Based on the method(s) selected, the last selection should be used to select the appropriate

reference(s). The fourth selection should be made to reflect the size of the KEK; 2048/4096 is used
for the RSA-based schemes, while the size of the prime modulus is used for ECC-based schemes.

Assurance Activities:

Activity Assurance Activity

TSS Requirement met by the platform

If the platform provides the FEK encryption/decryption, then the evaluator shall
examine the TSS to verify that it describes how the FEK encryption/decryption
is invoked.

Requirement met by the TOE

The evaluator shall examine the TSS to ensure there is a high-level description
of how the FEK is protected.

Guidance None

Tests These tests are only for data encryption provided by the application:

 Test 1: The evaluator shall use platform tools (such as a debugger) to

generate a FEK to be generated and capture the value of the FEK. The
evaluator shall then continue with the TOE operation which will result in an
encrypted resource, as well as an encrypted FEK being associated with the
resource as described in the TSS. The evaluator shall then examine the
encrypted FEK to determine that it is different than the value of the
unencrypted FEK. The evaluator shall then use the information provided in
the ST and TSS to determine that the unencrypted FEK—when wrapped
according to the algorithm and parameters used by the TOE as described—
produces the value observed for the encrypted FEK.

AES Key Wrap (with or without padding)

If AES Key Wrap is used to decrypt/encrypt the key, the evaluator shall examine
the TSS to determine that it specifies that the implementation conforms to SP
800-38F with the appropriate (with or without padding) Key Wrap section
using AES.

34

The evaluator shall also perform the verification procedures outlined in the
testing methodology, “The Key Wrap Validation System”.
(http://csrc.nist.gov/groups/STM/cavp/documents/mac/KWVS.pdf)

RSA

The evaluator shall check the TSS to ensure it describes the various values used
for the RSA-OAEP encryption and decryption scheme described in NIST SP 800-
56B, section 7.2.2 and other referenced sections.

The evaluator shall also perform the validation procedures outlined in
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-
cryptography-standard.htm.

ECC CDH

The evaluator shall verify a TOE's implementation of the ECC DH key
agreement scheme using the following Function and Validity tests. These
validation tests verify that a TOE has implemented the components of the key
agreement scheme according to the specifications in the Recommendation.
These components include the calculation of the DLC primitives (the shared
secret value Z) and the calculation of the derived keying material (DKM) via the
Key Derivation Function (KDF). If key confirmation is supported, the evaluator
shall also verify that the components of key confirmation have been
implemented correctly, using the test procedures described below. This
includes the parsing of the DKM, the generation of MAC data and the
calculation of MAC tag.

Function Test

The Function test verifies the ability of the TOE to implement the key
agreement scheme correctly. To conduct this test, the evaluator shall generate
or obtain test vectors from a known good implementation of the TOE
supported schemes. For each supported key agreement scheme-key agreement
role combination, KDF type, and, if supported, key confirmation role- key
confirmation type combination, the tester shall generate 10 sets of test
vectors. The data set consists of one NIST approved curve per 10 sets of
ephemeral public keys. The evaluator shall obtain the DKM, the corresponding
TOE‘s public keys, the MAC tag(s), and any inputs used in the KDF, such as the
Other Information field OI and TOE id fields. The evaluator shall verify the
correctness of the TSF‘s implementation of a given scheme by using a known
good implementation to calculate the shared secret value, derive the keying
material DKM, and compare hashes or MAC tags generated from these values.
If key confirmation is supported, the TSF shall perform the above for each
implemented approved MAC algorithm.

http://csrc.nist.gov/groups/STM/cavp/documents/mac/KWVS.pdf
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm

35

Validity Test

The Validity test verifies the ability of the TOE to recognize another party‘s
valid and invalid key agreement results with or without key confirmation. To
conduct this test, the evaluator shall obtain a list of the supporting
cryptographic functions included in the SP800-56A key agreement
implementation to determine which errors the TOE should be able to
recognize. The evaluator generates a set of 30 test vectors consisting of data
sets including the selected NIST approved curves, the evaluator‘s public keys,
the TOE‘s ephemeral public/private key pairs, MACTag, and any inputs used in
the KDF, such as the other info and TOE id fields.

The evaluator shall inject an error in some of the test vectors to test that the
TOE recognizes invalid key agreement results caused by the following fields
being incorrect: the shared secret value Z, the DKM, the other information field
OI, the data to be MACed, or the generated MACTag. If the TOE contains the
full or partial public key validation, the evaluator will also individually inject
errors in the static public keys, the ephemeral public keys and the TOE‘s
ephemeral private key to assure the TOE detects errors in the public key
validation function and/or the partial key validation function. At least two of
the test vectors shall remain unmodified and therefore should result in valid
key agreement results (they should pass).
The TOE shall use these modified test vectors to emulate the key agreement
scheme using the corresponding parameters. The evaluator shall compare the
TOE‘s results with the results using a known good implementation verifying
that the TOE detects these errors.

FCS_IV_EXT.1 Extended: Initialization Vector Generation

FCS_IV_EXT.1.1 The application shall [selection: implement platform-provided functionality
to generate IVs, generate IVs] in accordance with Appendix H: Initialization
Vector Requirements for NIST-Approved Cipher Modes.

Application Note:

98 Appendix G lists the requirements for composition of IVs according to the NIST Special Publications

for each cipher mode. The composition of IVs generated for encryption according to a cryptographic
protocol is addressed by the protocol. Thus, this requirement addresses only IVs generated for key
storage and data storage encryption.

Assurance Activities:

36

Activity Assurance Activity

TSS Requirement met by the platform

If the platform provides the IV generation, then the evaluator shall examine the
TSS to verify that it describes how the IV generation is invoked.

Requirement met by the TOE

The evaluator shall examine the key hierarchy section of the TSS to ensure that
the encryption of all keys is described and the formation of the IVs for any data
encrypted by the same key meets FCS_IV_EXT.1.

Guidance None

Tests None

FCS_KYC_EXT.1 Key Chaining and Key Storage

FCS_KYC_EXT.1.1

The TSF shall maintain a key chain of:
[selection:
One;
 a conditioned password as the FEK;
KEKs originating from one or more authorization factors(s) to the FEK(s) using
the following method(s):
 [selection:
 utilization of the platform key storage;
 utilization of platform key storage that performs key wrap with a TSF
provided key;
 implement key wrapping as specified in FCS_COP.1(5);
 implement key combining as specified in FCS_SMC_EXT.1
]
 while maintaining an effective strength of [selection: 128 bits, 256 bits]
].

Application Note:

Key Chaining is the method of using multiple layers of encryption keys to ultimately secure the
FEK. The number of intermediate keys will vary. This applies to all keys that contribute to the
ultimate wrapping or derivation of the FEK; including those in areas of protected.

This requirement also describes how keys are stored.

37

Assurance Activities:

Activity Assurance Activity

TSS Requirement met by the TOE

The evaluator shall verify the TSS* describes a high level description of the key
hierarchy for all authorizations methods selected in FIA_AUT_EXT that are used
to protect the KEK or FEK. The evaluator shall examine the TSS to ensure it
describes the key chain in detail. The description of the key chain shall be
reviewed to ensure it maintains a chain of keys using key wrap that meet
FCS_COP.1(5).

The evaluator shall verify the TSS* to ensure that it describes how the key chain
process functions, such that it does not expose any material that might
compromise any key in the chain. A high-level description should include a
diagram illustrating the key hierarchy implemented and detail where all keys
and keying material is stored or what it is derived from. The evaluator shall
examine the key hierarchy to ensure that at no point the chain could be broken
without a cryptographic exhaust or knowledge of the KEK or FEK and the
effective strength of the FEK is maintained throughout the Key Chain.

*if necessary, this information could be contained in a proprietary
document and not appear in the TSS.

Requirement met by the platform

If the platform provides the IV generation, then the evaluator shall examine the
TSS to verify that it describes how the IV generation is invoked.

Guidance None

Tests None

4.3.2 Class: Identification and Authentication (FIA)

FIA_AUT_EXT.1 User Authorization

FIA_AUT_EXT.1.1 The application shall [selection: implement platform-provided functionality to
provide user authorization, provide user authorization] based on [selection:
external entity authorization factors, password/passphrase authorization
factors].

Application Note:

38

99 Requirements that pertain to the selection are contained in Appendix C. The ST author will include
FIA_FCT_EXT.1(1) in the ST if the TOE supports RSA/ECC CDH authorization factors, and will include
FIA_FCT_EXT.1(2) in the ST if the TOE supports password/passphrase authorization factors.

100 It is possible that the platform is providing the actual authorization functionality.

Assurance Activities:

101 The assurance activities for this component will be driven by the selections made by the ST author.
This section describes assurance activities for all possible selections in an ST; it should be
understood that if a capability is not selected in the ST, the noted assurance activity does not need
to be performed.

Activity Assurance Activity

TSS The evaluator shall examine the TSS to ensure that it describes how user
authentication is performed. The evaluator shall verify that the authorization
methods listed in the TSS are specified and included in the requirements in the
ST.

Requirement met by the TOE

Nothing additional.

Requirement met by the platform
The evaluator shall examine the TSS to ensure a description is included for how
the TOE is invoking the platform functionality and how it is getting an
authorization value that has appropriate entropy.

Guidance The evaluator shall verify that the operational guidance includes instructions
for configuring the selected authorization method.

Tests The evaluator shall ensure that authorization using each selected method is
tested during the course of the evaluation, setting up the method as described
in the operational guidance and ensuring that authorization is successful.

4.3.3 Class: User Data Protection (FDP)

Extended: Protection of Selected User Data (FDP_PRT_EXT)

FDP_PRT_EXT.1 Extended: Protection of Selected User Data

FDP_PRT_EXT.1.2

The application shall [selection: invoke platform-provided functionality,
implement functionality] to ensure that all sensitive data created by the

39

TOE when decrypting/encrypting the user-selected file (or set of files) are
destroyed in volatile and non-volatile memory upon completion of the
decryption/encryption operation.

Application Note:

102 The intent is that the TSF controls the use and clearing of any data that it manipulates. However, it
is possible that the TSF shall only be invoking the The TSF is not responsible for temporary files that
an editor application creates. An optional requirement on cleaning up the temporary files created
by an editor application is in Appendix B.

103 The TSF has “completed the decryption/encryption operation” after it has decrypted the file (or set
of files) and any edited data has been stored encrypted and the plaintext editor has been closed.

Assurance Activities:

Activity Assurance Activity

TSS Requirement met by the platform

If the platform provides the FEK encryption/decryption, then the evaluator shall
examine the TSS to verify that it describes how the FEK encryption/decryption
is invoked.

Requirement met by the TOE

The evaluator shall examine the TSS to ensure there is a high-level description
of how the FEK is protected.

The evaluator shall examine the TSS to ensure that it describes all temporary
files/resources created or memory used during the decryption/encryption
process. The TSS shall describe how the TSF or TOE platform deletes the non-
volatile memory (for example, files) and volatile memory locations after the
TSF is done with its decryption/encryption operation.

Guidance None

Tests These tests are only for application provided functionality:

For each type of encryption mode and encryption operation, a known plaintext
file, ciphertext file and the associated keying material must be supplied to the
evaluator. The evaluator will use the TOE in conjunction with a debugging or
forensics utility to attempt to encrypt the plaintext and decrypt the ciphertext.
The evaluator will ascertain from the TSS what the vendor defines as “no
longer needed” for plaintext information and execute the sequence of actions
via the TOE to invoke this state. At this point, the evaluator should take a dump
of volatile memory and search the retrieved dump for any plaintext

40

information. The evaluator must document each command, program or action
taken during this process, and must confirm that no sensitive data resides in
volatile memory. The evaluator must perform this test three times to ensure
repeatability. If during the course of this testing the evaluator finds that
plaintext material remains in volatile memory, they should be able to identify
the cause and document the reason for failure to comply with this
requirement. The evaluator will repeat this same test, but looking for sensitive
data in non-volatile memory.

4.4 Security Assurance Requirements for the File Encryption Application (TOE)

104 The Security Objectives for the TOE in Section 3.1 were constructed to address threats identified in
Section 2. The Security Functional Requirements (SFRs) in Section 4.2 and 4.3 are a formal
instantiation of the Security Objectives. The EP draws from EAL1 the Security Assurance
Requirements (SARs) to frame the extent to which the evaluator assesses the documentation
applicable for the evaluation and performs independent testing.

105 As indicated in the introduction to Section 4, while this section contains the complete set of SARs
from the CC, the Assurance Activities to be performed by an evaluator are detailed both in Sections
4.2 and 4.3 as well as in this section.

106 The general model for evaluation of TOEs against STs written to conform to this EP is as follows.
After the ST has been approved for evaluation, the CCTL will obtain the TOE, supporting
environmental IT, and the administrative guides for the TOE. The Assurance Activities listed in the
ST (which will be refined by the CCTL to be TOE-specific, either within the ST or in a separate
document) will then be performed by the CCTL. The results for the assurance activities will be
documented and presented (along with the Operational Guidance used) for validation by CCEVS.

107 For each family, “Developer Notes” are provided on the developer action elements to clarify what,
if any, additional documentation/activity needs to be provided by the developer. For the
content/presentation and evaluator activity elements, additional assurance activities (to those
already contained in Section 4) are described as a whole for the family, rather than for each
element. Additionally, the assurance activities described in this section are complementary to
those specified in Sections 4.2 and 4.3. The totality of the assurance activities specified in Sections
4.2 and 4.3 and this section are sufficient to provide EAL1 assurance.

108 The TOE security assurance requirements, summarized in Table 5, identify the management and
evaluative activities required to address the threats identified in Section 2 of this EP. Section 4.5
provides a succinct justification for choosing EAL1 as the assurance level for this EP.

Assurance Class
Assurance

Components
Assurance Components Description

Development
ADV_FSP.1 Basic Functional Specification

Guidance Documents
AGD_OPE.1 Operational user guidance

41

 AGD_PRE.1 Preparative User guidance

Tests
ATE_IND.1 Independent testing - conformance

Vulnerability Assessment
AVA_VAN.1 Vulnerability analysis

Life Cycle Support
ALC_CMC.1 Labeling of the TOE

 ALC_CMS.1 TOE CM coverage

Table 5: TOE Security Assurance Requirements

4.4.1 Class ADV: Development

109 At EAL1, the information about the TOE is contained in the guidance documentation available to
the end user as well as the TOE Summary Specification (TSS) portion of the ST. While it is not
required that the TOE developer write the TSS, the TOE developer must concur with the description
of the product that is contained in the TSS as it relates to the functional requirements. The
Assurance Activities contained in Sections 4.2 and 4.3 should provide the ST authors with sufficient
information to determine the appropriate content for the TSS section.

4.4.1.1 ADV_FSP.1 Basic functional specification

110 The functional specification describes the TSFIs. At EAL1, it is not necessary to have a formal or
complete specification of these interfaces. Additionally, because TOEs conforming to this EP will
necessarily have interfaces to the Operational Environment that cannot be directly invoked by TOE
users, at EAL1 there is little point specifying that such interfaces be described in and of themselves
since only indirect testing of such interfaces may be possible. The activities for this family for this
EP should focus on understanding the interfaces presented in the TSS in response to the functional
requirement and the interfaces presented in the AGD documentation. No additional “functional
specification” document should be necessary to satisfy the assurance activities specified.

111 In understanding the interfaces to the TOE, it is important to consider that the primary threat to be
countered is that where an attacker gains access to a host machine with sensitive data and
attempts to gain access to the TOE functionality in order to decrypt the data on the host drive.
Once an attacker has access to the TOE authentication interface the attacker may attempt to guess
the authorization factors to access the TOE’s decryption functionality. The operational interface
(how the TOE is configured) also needs to be described.

112 The interfaces that need to be evaluated are characterized through the information needed to
perform the assurance activities listed, rather than as an independent, abstract list.

 Developer action elements:

ADV_FSP.1.1D The developer shall provide a functional specification.

ADV_FSP.1.2D The developer shall provide a tracing from the functional

42

specification to the SFRs.

Developer Note: As indicated in the introduction to this section, the functional
specification is comprised of the information contained in the
AGD_OPR and AGD_PRE documentation, coupled with the
information provided in the TSS of the ST. The assurance activities in
the functional requirements point to evidence that should exist in
the documentation and TSS section; since these are directly
associated with the SFRs, the tracing in element ADV_FSP.1.2D is
implicitly already done and no additional documentation is
necessary.

 Content and presentation elements:

ADV_FSP.1.1C The functional specification shall describe the purpose and method
of use for each SFR-enforcing and SFR-supporting TSFI.

ADV_FSP.1.2C The functional specification shall identify all parameters associated
with each SFR-enforcing and SFR-supporting TSFI.

ADV_FSP.1.3C The functional specification shall provide rationale for the implicit
categorization of interfaces as SFR-non-interfering.

ADV_FSP.1.4C The tracing shall demonstrate that the SFRs trace to TSFIs in the
functional specification.

 Evaluator action elements:

ADV_ FSP.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_ FSP.1.2E The evaluator shall determine that the functional specification is an
accurate and complete instantiation of the SFRs.

Assurance Activities:

113 There are no specific assurance activities associated with these SARs. The functional specification
documentation is provided to support the evaluation activities described in Sections 4.2 and 4.3,
and other activities described for AGD, ATE, and AVA SARs. The requirements on the content of the
functional specification information is implicitly assessed by virtue of the other assurance activities
being performed; if the evaluator is unable to perform an activity because there is insufficient
interface information, then an adequate functional specification has not been provided. For
example, if the TOE provides the capability to configure the key length for the AES encryption
algorithm but fails to specify an interface to perform this function, then the assurance activity
associated with FMT_SMF would fail.

4.4.2 Class AGD: Guidance Documents

43

114 The guidance documents will be provided with the developer’s security target. As indicated in the
introduction, the duties of actual “administrators” are fairly restricted, so the guidance documents
will contain information that is required by and used by all users of the TOE. To this end
“authorized user” is used in most cases in the text below; when “administrator” is used (except in
the verbatim requirements from the CC) it is referring to the subset of users with responsibility for
creating strong password/passphrase authorization factors.
Guidance must be provided for every Operational Environment that the product supports as
claimed in the ST. This guidance includes

 instructions to successfully install the TOE in that environment; and

 instructions to manage the security of the TOE as a product and as a component of the larger
Operational environment.

Guidance pertaining to particular security functionality is also provided; requirements on such
guidance are contained in the assurance activities specified in Sections 4.2 and 4.3.

In addition to the areas already mentioned, the guidance specifies which power management
modes (e.g., hibernate, sleep) conform to OE.POWER_SAVE and provides instructions how to
disable those that do not conform to be disabled.

4.4.2.1 AGD_OPE.1 Operational User Guidance

 Developer action elements:

AGD_OPE.1.1D The developer shall provide operational user guidance.

Developer Note: Rather than repeat information here, the developer should review the

assurance activities for this component to ascertain the specifics of the
guidance that the evaluators will be checking for. This will provide the
necessary information for the preparation of acceptable guidance.

 Content and presentation elements:

AGD_OPE.1.1C The operational user guidance shall describe, for each user role, the user-
accessible functions and privileges that should be controlled in a secure
processing environment, including appropriate warnings.

AGD_OPE.1.2C The operational user guidance shall describe, for each user role, how to use the
available interfaces provided by the TOE in a secure manner.

AGD_OPE.1.3C The operational user guidance shall describe, for each user role, the available
functions and interfaces, in particular all security parameters under the control
of the user, indicating secure values as appropriate.

AGD_OPE.1.4C The operational user guidance shall, for each user role, clearly present each
type of security-relevant event relative to the user-accessible functions that

44

need to be performed, including changing the security characteristics of entities
under the control of the TSF.

AGD_OPE.1.5C The operational user guidance shall identify all possible modes of operation of
the TOE (including operation following failure or operational error), their
consequences and implications for maintaining secure operation.

AGD_OPE.1.6C The operational user guidance shall, for each user role, describe the security
measures to be followed in order to fulfill the security objectives for the
operational environment as described in the ST.

AGD_OPE.1.7C The operational user guidance shall be clear and reasonable.

 Evaluator action elements:

AGD_OPE.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Assurance Activities:

115 Some of the contents of the Operational Guidance will be verified by the assurance activities in
Sections 4.1 and 4.2. This guidance will cover all platforms that the TOE claims conformance to.
However, two additional warnings shall be provided in the guidance to users. The guidance shall
warn authorized users that they must not let the host machine leave their physical control while the
host is powered on and encrypted files are opened in plain text. Additionally, it shall state that
authorized users shall not leave/store the password/passphrases, and/or external hardware stored
authorization factors unprotected with the host machine or if multiple factors are used, with each
other.

116 The following additional information is also required:

117 Non-mobile systems (and laptops in particular) generally support a number of modes that are
targeted at states of user inactivity: power management modes (e.g., hibernation, sleep/standby,
auto-shutdown). There are two areas that need to be covered in the guidance.

118 The first addresses the steps that must be performed to configure the platform so that the system
powers down completely after a period of user inactivity; the point being that on power-down, the
residual keying/plaintext material in volatile memory will be erased and all user resources in non-
volatile are encrypted if so designated. While it is allowable for a function such as a PC-screen lock
to become active due to user inactivity prior to the power-down process being initiated, it is not a
substitute for power-down and does not satisfy this requirement.

119 The second addresses instructions to disable the power saving modes that do not completely power
down the system and shut down the operating system; instead, the system has some state stored
(either in volatile memory or on disk) allowing the user to start working from where they left off
prior to the mode that was entered. Conformant TOEs are not allowed to enter any modes that
leave the computer in a compromised state.

45

120 If the TOE claims to provide protection to data while in a power saving mode, the requirements in

Appendix B.2 will apply.

121 For Mobile devices, control over power and lifecycle management is performed differently because
the TOE is dependent on the TOE Platform to provide the mechanisms and implementation for these
state changes. Background execution is performed frequently and occurs automatically when the
TOE is not in focus. The TOE is expected to substantiate any claim of providing data protection when
the TOE platform signals that a state change as described above has occurred.

4.4.2.2 AGD_PRE.1 Preparative procedures

 Developer action elements:

AGD_PRE.1.1D The developer shall provide the TOE including its preparative procedures.

Developer Note: As with the Operational Guidance, the developer should look to the assurance

activities to determine the required content with respect to preparative
procedures.

 Content and presentation elements:

AGD_ PRE.1.1C The preparative procedures shall describe all the steps necessary for secure
acceptance of the delivered TOE in accordance with the developer's delivery
procedures.

AGD_ PRE.1.2C The preparative procedures shall describe all the steps necessary for secure
installation of the TOE and for the secure preparation of the operational
environment in accordance with the security objectives for the operational
environment as described in the ST.

 Evaluator action elements:

AGD_ PRE.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AGD_ PRE.1.2E The evaluator shall apply the preparative procedures to confirm that the TOE
can be prepared securely for operation.

Assurance Activities:

122 As indicated in the introduction above, there are significant expectations with respect to the
documentation—especially when configuring the operational environment to support TOE
functional requirements. The evaluator shall check to ensure that the guidance provided for the TOE
adequately addresses all platforms (that is, combination of hardware and operating system)
claimed for the TOE in the ST.

46

123 The evaluator shall check to ensure that the following guidance is provided:

● Instructions and information are provided to the authorized user detailing how to configure the
product so that selected user data on the host machine is encrypted when setting up the product,
and that this is the only allowed configuration for conformant TOEs.

● If there are requirements on the operational environment with respect to the cryptographic
functionality listed in Appendix C, Section C.1, then the evaluator shall ensure that acceptable
implementations for the TOE are identified, and that testing is conducted in an allowed
configuration identified in the guidance.

4.4.3 Class ATE: Tests

124 Testing is specified for functional aspects of the system as well as aspects that take advantage of
design or implementation weaknesses. The former is done through ATE_IND family, while the
latter is through the AVA_VAN family. At the assurance level specified in this EP, testing is based on
advertised functionality and interfaces with dependency on the availability of design information.
One of the primary outputs of the evaluation process is the test report as specified in the following
requirements.

4.4.3.1 ATE_IND.1 Independent testing - Conformance

125 Testing is performed to confirm the functionality described in the TSS as well as the operational
documentation provided. The focus of the testing is to confirm that the requirements specified in
Sections 4.2 and 4.3 are being met, although some additional testing is specified for SARs in Section
4.3. The Assurance Activities identify the minimum testing activities associated with these
components. The evaluator produces a test report documenting the plan for and results of testing,
as well as coverage arguments focused on the platform/TOE combinations that are claiming
conformance to this EP.

 Developer action elements:

ATE_IND.1.1D The developer shall provide the TOE for testing.

 Content and presentation elements:

ATE_IND.1.1C The TOE shall be suitable for testing.

 Evaluator action elements:

ATE_IND.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_IND.1.2E The evaluator shall test a subset of the TSF to confirm that the TSF operates as
specified.

 Assurance Activities:

126 The evaluator shall prepare a test plan and report documenting the testing aspects of the system.
The test plan covers all of the testing actions contained in the body of this EP’s Assurance Activities.

47

While it is not necessary to have one test case per test listed in an Assurance Activity, the evaluators
must document in the test plan that each applicable testing requirement in the ST is covered.

127 The Test Plan identifies the platforms to be tested, and for those platforms not included in the test
plan but included in the ST, the test plan provides a justification for not testing the platforms. This
justification must address the differences between the tested platform and the untested platforms,
and make an argument that the differences do not affect the testing to be performed. It is not
sufficient to merely assert that the differences have no affect; rationale must be provided.
Evaluators shall especially consider OS-based mechanisms that deal with power management
modes such as power-saving and hibernation functions when writing this justification. If all
platforms claimed in the ST are tested, then no rationale is necessary.

128 The test plan describes the composition of each platform to be tested, and any setup that is
necessary beyond what is contained in the AGD documentation. It should be noted that the
evaluators are expected to follow the AGD documentation for installation and setup of each
platform either as part of a test or as a standard pre-test condition. This may include special test
drivers or tools. For each driver or tool, an argument (not just an assertion) is provided that the
driver or tool will not adversely affect the performance of the functionality by the TOE and its
platform.

129 The test plan identifies high-level test objectives as well as the test procedures to be followed to
achieve those objectives. These procedures include expected results. The test report (which could
just be an annotated version of the test plan) details the activities that took place when the test
procedures were executed, and includes the actual results of the tests. This shall be a cumulative
account, so if there was a test run that resulted in a failure; a fix installed; and then a successful re-
run of the test, the report would show a “fail” and “pass” result (and the supporting details), and
not just the “pass” result.

4.4.4 Class AVA: Vulnerability assessment

130 For the first generation of this protection profile, the evaluation lab is expected to survey open
sources to learn what vulnerabilities have been discovered in these types of products. In most
cases, these vulnerabilities will require sophistication beyond that of a basic attacker. Until
penetration tools are created and uniformly distributed to the evaluation labs, evaluators will not
be expected to test for these vulnerabilities in the TOE. The labs will be expected to comment on
the likelihood of these vulnerabilities given the documentation provided by the vendor. This
information will be used in the development of penetration testing tools and for the development
of future protection profiles.

4.4.4.1 AVA_VAN.1 Vulnerability survey

 Developer action elements:

AVA_VAN.1.1D The developer shall provide the TOE for testing.

 Content and presentation elements:

AVA_VAN.1.1C The TOE shall be suitable for testing.

48

 Evaluator action elements:

AVA_VAN.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

AVA_VAN.1.2E The evaluator shall perform a search of public domain sources to
identify potential vulnerabilities in the TOE.

AVA_VAN.1.3E The evaluator shall conduct penetration testing, based on the
identified potential vulnerabilities, to determine that the TOE is
resistant to attacks performed by an attacker possessing Basic attack
potential.

Assurance Activities:

131 As with ATE_IND the evaluator shall generate a report to document their findings with respect to
this requirement. This report could physically be part of the overall test report mentioned in
ATE_IND, or a separate document. The evaluator performs a search of public information to
determine the vulnerabilities that have been found in file encryption products in general, as well as
those that pertain to the particular TOE. The evaluator documents the sources consulted and the
vulnerabilities found in the report. For each vulnerability found, the evaluator either provides a
rationale with respect to its non-applicability or the evaluator formulates a test (using the
guidelines provided in ATE_IND) to confirm the vulnerability, if suitable. Suitability is determined by
assessing the attack vector needed to take advantage of the vulnerability. For example, if the
vulnerability can be detected by pressing a key combination on boot-up, a test would be suitable at
the assurance level of this EP.

4.4.5 Class ALC: Life-cycle support

132 At the assurance level provided for TOEs conformant to this EP, life-cycle support is limited to end-
user-visible aspects of the life-cycle, rather than an examination of the TOE vendor’s development
and configuration management process. This is not meant to diminish the critical role that a
developer’s practices play in contributing to the overall trustworthiness of a product; rather, it’s a
reflection on the information to be made available for evaluation at this assurance level.

4.4.5.1 ALC_CMC.1 Labeling of the TOE

133 This component is targeted at identifying the TOE such that it can be distinguished from other
products or version from the same vendor and can be easily specified when being procured by an
end user.

 Developer action elements:

ALC_CMC.1.1D The developer shall provide the TOE and a reference for the TOE.

 Content and presentation elements:

ALC_CMC.1.1C The TOE shall be labeled with its unique reference.

49

Evaluator action elements:

ALC_CMC.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Assurance Activities:

134 The evaluator shall check the ST to ensure that it contains an identifier (such as a product
name/version number) that specifically identifies the version that meets the requirements of the ST.
Further, the evaluator shall check the AGD guidance and TOE samples received for testing to ensure
that the version number is consistent with that in the ST. If the vendor maintains a web site
advertising the TOE, the evaluator shall examine the information on the web site to ensure that the
information in the ST is sufficient to distinguish the product.

4.4.5.2 ALC_CMS.1 TOE CM coverage

135 Given the scope of the TOE and its associated evaluation evidence requirements, this component’s
assurance activities are covered by the assurance activities listed for ALC_CMC.1.

 Developer action elements:

ALC_CMS.1.1D The developer shall provide a configuration list for the TOE.

 Content and presentation elements:

ALC_CMS.1.1C The configuration list shall include the following: the TOE itself; and the
evaluation evidence required by the SARs.

ALC_CMS.1.2C The configuration list shall uniquely identify the configuration items.

 Evaluator action elements:

ALC_CMS.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Assurance Activities:

136 The “evaluation evidence required by the SARs” in this EP is limited to the information in the ST
coupled with the guidance provided to administrators and users under the AGD requirements. By
ensuring that the TOE is specifically identified and that this identification is consistent in the ST and
in the AGD guidance (as done in the assurance activity for ALC_CMC.1), the evaluator implicitly
confirms the information required by this component.

4.5 Rationale for Security Functional Requirements

137 The rationale for choosing these security functional requirements is that this is the first U.S.
Government Protection Profile for this technology. If vulnerabilities are found in these types of
products, then more stringent security assurance requirements will be mandated based on actual

50

vendor practices.

This EP does not claim conformance to another PP.

51

Appendix A: Rationale

In this EP, the focus in the initial sections of the document is to use a narrative presentation in an
attempt to increase the overall comprehensibility of the threats addressed by a File Encryption
product; the methods used to mitigate those threats; and the extent of the mitigation achieved by
compliant TOEs. This presentation style does not readily lend itself to a formalized evaluation
activity, so this section contains the tabular artifacts that can be used for the evaluation activities
associated with this document. Note that the rationale for threats, objectives, and requirements is
contained in the narrative in the body of the document.

A.1 Security Problem Definition

A.1.1 Threats

Threat Description of Threat

T.KEYING_MATERIAL_COMPROMISE An attacker can obtain unencrypted key material
(the KEK, the FEK, authorization factors, and
random numbers, or any other values from which a
key is derived) that the TOE has written to volatile
memory, and use these values to gain unauthorized
access to sensitive encrypted user data.

T.KEYSPACE_EXHAUST An unauthorized user may attempt a brute force
attack to determine cryptographic keys or
authorization factors to gain unauthorized access to
user or TSF data.

T.PLAINTEXT_COMPROMISE An attacker may obtain unauthorized read access
to sensitive plaintext material (the input to the file
encryption) that the TOE has written to volatile
memory as a result of the creation of a temporary
file or improper memory clean-up.

T.TSF_FAILURE Security mechanisms of the TOE may fail, leading to
a compromise of the TSF.

T.UNAUTHORIZED_DATA_ACCESS An unauthorized user that has access to filesystem
on which a protected resource resides may gain
access to data for which they are not authorized
according to the TOE security policy.

T.UNSAFE_AUTHFACTOR_VERIFICATION

An attacker can take advantage of an unsafe
method for performing verification of an
authorization factor, resulting in exposure of the
KEK, FEK, or user data.

T.PLAINTEXT_DATA_SPOOFING An attacker can take advantage of certain
encryption modes to modify the underlying
plaintext without user awareness.

52

A.1.2 Assumptions

Assumption Description of Assumption

A.AUTHORIZED_USER Authorized users of the host machine are well-trained, not actively
working against the protection of the data, and will follow all
provided guidance.

A.AUTH_FACTOR An authorized user will be responsible for ensuring that all
externally derived authorization factors have sufficient strength
and entropy to reflect the sensitivity of the data being protected.
This can apply to password- or passphrase-based, ECC CDH, and
RSA authorization factors.

A.EXTERNAL_FEK_PROTECTIO
N

External entities that implement ECC CDH or RSA that are used to
encrypt and decrypt a FEK have the following characteristics:

● meet National requirements for the cryptographic mechanisms
implemented;

● require authentication via a pin or other mechanisms prior to
allowing access to protected information (the decrypted FEK, or
the private key);

● implement anti-hammer provisions where appropriate (for
example, when a pin is the authentication factor).

A.SHUTDOWN An authorized user will not leave the machine in a mode where
sensitive information persists in non-volatile storage (e.g., power it
down or enter a power managed state, such as a “hibernation
mode”).

A.STRONG_OE_CRYPTO All cryptography implemented in the Operational Environment and
used by the TOE will meet the requirements listed in Appendix C of
this EP. This includes generation of external token authorization
factors by a RBG.

A.PLATFORM_STATE The platform on which the TOE resides is free of malware that

could interfere with the correct operation of the product.

A.AUTHORIZED_CONFIGURAT
ION

Access and ability to modify the cryptographic configuration files

may be done only by authorized users.

A.KEK_SECURITY The KEK will be derived from a strong entropy source, attaining

equal or greater bit strength to that of the block cipher it is used in.

A.FILE_INTEGRITY When the file is in transit, it is not modified, otherwise if that

possibility exists, the appropriate selections in Appendix B are

chosen for Data Authentication.

53

 A.2 Security Objectives

A.2.1 Security Objectives for the TOE

Objective Objective Description

O.AUTHORIZATION The TOE must enforce the entry of authorization
factor(s) by authorized users to be able to encrypt
and decrypt user data.

O.CORRECT_TSF_OPERATION The TOE will provide the capability to test the TSF to
ensure the correct operation of the TSF in its
operational environment.

O.PROTECT_DATA

The TOE will decrypt/encrypt all user data that is
provided to the file encryption program in order to
protect it while it is not being activity accessed by the
user.

O.FEK_SECURITY The TOE will encrypt the FEK using a KEK created from
one or more authorization factors so that a threat
agent who does not have the authorization factor(s)
will be unable to gain access to the user data by
obtaining the FEK. The size of the FEK will be large
enough to make a brute force attack infeasible.

O.KEY_MATERIAL_PROTECTION The TOE shall ensure that unencrypted keys or keying
material are properly removed from memory after
use.

O.MANAGE The TOE will provide all the functions and facilities
necessary to support the authorized administrators in
their management of the security of the TOE, and
restrict these functions and facilities from
unauthorized use.

O. SAFE_AUTHFACTOR_VERIFICATION

The TOE shall perform verification of the authorization
factors in such a way that the KEK, FEK, or user data
are not inadvertently exposed.

O.WIPE_MEMORY The TOE shall ensure that non-volatile memory space
corresponding to sensitive plaintext material
(encryption input) is wiped from the TOE’s memory.
This includes temporary files that may have been
created.

O.DATA_AUTHENTICATION (optional) The TOE shall verify the integrity of the plaintext data
using an approved data authentication method.

54

A.2.2 Security Objectives for the Operational Environment

138 The Operational Environment of the TOE implements technical and procedural measures to assist

the TOE in correctly providing its security functionality (which is defined by the security objectives
for the TOE). The security objectives for the Operational Environment consist of a set of statements
describing the goals that the Operational Environment should achieve.

139 This section defines the security objectives that are to be addressed by the IT domain or by non-
technical or procedural means. The assumptions identified in Section A.1.2 are incorporated as
security objectives for the environment.

Objective Objective Description
OE.AUTHORIZATION_FACTOR_STRENGTH An authorized user will be responsible for ensuring that

all externally derived authorization factors have
sufficient strength and entropy to reflect the sensitivity
of the data being protected. This can apply to password-
or passphrase-based, ECC CDH, and RSA authorization
factors.

OE.POWER_SAVE The non-mobile operational environment must be
configurable so that there exists at least one mechanism
that will cause the system to power down after a period
of time in the same fashion as the user electing to
shutdown the system (A.SHUTDOWN). Any such
mechanism (e.g., sleep, hibernate) that does not
conform to this requirement must be capable of being
disabled.

The mobile operational environment must be
configurable such that there exists at least one
mechanism that will cause the system to lock upon a
period of time.

OE.STRONG_ENVIRONMENT_ CRYPTO The Operating environment will provide a cryptographic
function capability that is commensurate with the
requirements and capabilities of the TOE.

OE.TRAINED_USERS Authorized users of the host machine will be trained to
follow all provided guidance.

55

Appendix B: Optional Requirements

140 As indicated in the introduction to this EP, the baseline requirements (those that must be

performed by the TOE or its underlying platform) are contained in the body of this EP. Additionally,
there are three other types of requirements specified in Appendices B, C, and D.

141 The first type (in this Appendix) are optional requirements that can be included in the ST, but do
not have to be in order for a TOE to claim conformance to this EP. The second type (in Appendix C)
are requirements based on selections in the body of the EP: if certain selections are made, then
additional requirements in that appendix will need to be included. The third type (in Appendix D)
are components that are not required in order to conform to this PP, but will be included in the
baseline requirements in future versions of this EP, so adoption by File Encryption Product vendors
is encouraged. Note that the ST author is responsible for ensuring that requirements that may be
associated with those in Appendix B, Appendix C, and/or Appendix D but are not listed (e.g., FMT-
type requirements) are also included in the ST.

B.1 Sharing Encrypted Resources

142 An optional feature that may be claimed by a TOE is the ability to share encrypted resources. In
order to claim this capability, the TOE must allow sharing of at least one encrypted resource among
different users of the TOE who possess different authorization factors (e.g., two different
smartcards, two different passwords, one using a password and another using a smartcard). If this
capability is supported, then the ST author adds FDP_PRT_EXT.2 (and the associated application
notes and assurance activities) to the ST.

Extended: Protection of Selected User Data (FDP_PRT_EXT)

FDP_PRT_EXT.2 Extended: Protection of Selected User Data

FDP_PRT_EXT.2.1

The application shall [selection: invoke platform-provided functionality,
implement functionality] to ensure that all original plaintext data created
when decrypting/encrypting the user-selected file (or set of files) are
destroyed in volatile and non-volatile memory upon completion of the
decryption/encryption operation.

FDP_PRT_EXT.2.2 The TSF shall support more than one user being able to access the same
encrypted resource, each using a different authorization factor.

FDP_PRT_EXT.2.3 The TSF shall ensure that all temporary files created (including those by a
third-party application, for example an editor) when decrypting/encrypting
the user-selected file (or set of files) are removed or encrypted upon
completion of the decryption/encryption operation.

Application Note:
143 This is the primary requirement for encrypting and decrypting the protected resources (file or set of

files). Apart from the actual encryption and decryption of the resources, there are three other

56

functions specified by this requirement.
144 FDP_PRT_EXT.2.2 requires that a single resource (file or set of files) be able to be encrypted, but

sharable among more than one user. The TSF must support each user having a different
authorization factor, which could be the same type of authorization factor but just a different value
(like two different passwords), or different types of authorization factors altogether.

145 For FDP_PRT_EXT.2.2-2.3, the intent is that the TSF controls the use and clearing of any data that it
manipulates. It needs to ensure that no plaintext data from encrypted resources, or any plaintext
key material that could be used to recover that information from the encrypted resource, remains
after the TSF has finished operating on that resource. In the context of FDP_PRT_EXT.2.2, the TSF
has completed the decryption operation after it has decrypted the file or set of files for use by an
application, and completed the encryption operation after it has encrypted the file or set of files for
storage in the filesystem.

Assurance Activities:

Activity Assurance Activity

TSS FDP_PRT_EXT.2.2 - The evaluator shall examine the TSS to determine that it
identifies each of the resources that is sharable in encrypted form (for instance,
encrypted files may be sharable among users, but encrypted directories may
not), and the method by which the resource can be shared among users with
different authorization factors. This description shall also cover the TSF actions
when adding or removing users to the set allowed to access the file.
FDP_PRT_EXT.2.3 - The evaluator shall examine the TSS to ensure that it
describes all temporary file (or set of files) that are created in the filesystem of
the host during the decryption/encryption process, and that the TSS describes
how these files are deleted after the TSF is done with its decryption/encryption
operation. Note that if other objects/resources are created on the host that
are 1) persistent and 2) visible to other processes (users) on that host that are
not filesystem objects, those objects shall be identified and described in the TSS
as well.

Guidance FDP_PRT_EXT.2.2 - The evaluator shall examine the operation guidance to
determine that it contains instructions on how to set up and share resources
with other users, if additional actions are necessary due to use of the
encryption product. If different for different underlying platforms, the
evaluator determines that all platforms listed in the ST are addressed.

Tests Test 1: For each type of resource that is identified in the TSS as sharable in its
encrypted form, the evaluator shall ensure that different users using different
authorization factors are able to successfully access the resource using
different authorization factors. This should include making changes to the
resource to ensure that the same resource is being shared, and that a per-user
copy of the resource is not being made.
Test 2: If the TSS or the third party file editor creates temporary files/resources
during file decryption/encryption, the evaluator shall perform the following

57

tests to verify that the temporary files/resources are destroyed. The evaluator
shall use a tool (e.g., procmon for a Windows system) that is capable of
monitoring the creation and deletion of files during the decryption/encryption
process is performed. A tool that can search the contents of the hard drive
(e.g., winhex) will also be needed. The tools used to perform the monitoring
shall be identified in the test report.

Test A (Creating an encrypted document)

- Open an editing application.
- Create a special string inside the document. The string could be 5-

10 words. It is recommended to remove the spaces. This will
create a one page document.

- Start the file monitoring tool.
- Save and close the file.
- Encrypt the file using the TOE (if the TOE does not encrypt

automatically for the user).

Analysis Steps

- If needed, exit/close the TOE.
- Stop the file monitoring tool. View the results. Identify any

temporary files that were created during the encryption process.
Examine to see if the temporary files were destroyed when the TOE
closed.

- If temporary files remain, these temporary files should be
examined to ensure that no plaintext data remains. If plaintext
data is found in these files, that means that plaintext from the
encrypted file remains on the hard drive.

- Search the contents of the hard drive (using the second tool) for
the plaintext string used above. (The search should be performed
using both ASCII and Unicode formats.)

- If the string is found, this means that plaintext from the encrypted
file remains on the hard drive.

Test B (Creating, Encrypting a blank document and then adding text):

- Encrypt a blank document using the tool.
- Create a special string inside the document. The string could be 5-

10 words. It is recommended to remove the spaces. This will
create a one page document.

- Start the file monitoring tool.
- Save and close the file.
- Perform the “Analysis Steps” listed above
- If Test 1 fails and Test 2 passes, the Operational Guidance shall

include instructions for the users to perform encryption in the
manner outlined in Test 2.

- Assumption: Regardless of the length of the file, it is assumed that if any
fragment of the original string is found, this reflects that there is a problem

58

with the cleanup with the file encryptor.

B.2 Power Management Function

146 As indicated above, a platform on which the TOE runs may support one or more modes of
"powering down" that is something less than a full shutdown by the user. In cases where these
modes leave data in volatile memory, they may cause the security policies to be circumvented if
the device (e.g., laptop) is taken by the attacker in this state.

147 Some TOEs may provide the facilities to cause information being transferred from volatile memory
to disk to be encrypted as per FDP.PRT_EXT.1.1, leaving the information correctly protected whilst
the platform is in a lower power mode (and no sensitive information is maintained in-memory). In
these cases, the following requirements should be used by the ST Author to specify this capability.

Extended: Protection of Data in Power Managed States (FDP_PM_EXT)

FDP_PM_EXT.1 Extended: Protection of Data in Power Managed States

FDP_PM_EXT.1.1 The TSF shall protect all data stored to the disk drive during the transition to
the [assignment: powered-down state(s) for which this capability is provided]
state as per FDP_PRT_EXT.1.1.

FDP_PM_EXT.1.2 On the return to a powered-on state from the state(s) indicated in
FDP_PM_EXT.1.1, the TSF shall authorize the user in the manner specified in
FIA_AUT_EXT.1.1 once before any protected data are decrypted.

Application Note:

For the first selection, the ST author fills in the state using the same name used in the Operational
Guidance for the state that is appropriately protected by the TOE.

It should be noted that it is not sufficient to use Operational Environment-based credentials to
unlock the TOE from the indicated state; the intent is that returning from the indicated state is
equivalent (from an authorization point of view) to returning from a completely powered-off state
and re-opening the resources that are protected.

Assurance Activities:

Activity Assurance Activity

TSS The evaluator shall examine the TSS to ensure that it describes the state(s) that
are supported by this capability. For each state, the evaluator ensures that the
TSS contains a description of how the state is entered, and the actions of the

59

TSF on entering the state, specifically addressing how multiple open resources
(of each type) are protected, and how keying material associated with these
resources is protected (if different from that described elsewhere). The TSF
shall also describe how the state is exited, and how the requirements are met
during this transition to an operational state.

Guidance The evaluator shall check the Operational Guidance to determine that it
describes the states that are supported by the TOE, and provides information
related to the correct configuration of these modes and the TOE.

Tests The following tests must be performed by the evaluator for each supported
State, type of resource, platform, and authorization factor:

● Test 1: Following the Operational guidance, configure the Operational
Environment and the TOE so that the lower power state of the platform is
protected. Open several resources (documented in the test report) that are
protected. Invoke the lower power state. On resumption of normal power an
attempting to access a previously-opened protected resource, observe that an
incorrect entry of the authorization factor(s) does not result in access to the
system, and that correct entry of the authorization factor(s) does result in
access to the resources.

B.3 Data Authentication Methods
Because data authentication can be achieved depending on the use of an authenticated block
cipher, keyed hashing function or asymmetric verification method, a different set of requirements
will be levied on the TOE depending on the selected choice.

B.3.1 Data Authentication with cryptographic, keyed hashing functions

FDP_AUT_EXT.2 Extended: Data Authentication using cryptographic, keyed hash
functions

FDP_AUT_EXT.2.1 The TSF shall use a cryptographic, keyed hash function in accordance
with FCS_COP.1(4).

FDP_AUT_EXT.2.2

The TSF shall use a File Authentication Key (FAK) in accordance with
FCS_COP.1(6) and FCS_CKM_EXT.5 as the secret key to the keyed
hash function.

FDP_AUT_EXT.2.3

The TSF shall use the entirety of the ciphertext file as the message
input to the keyed hash function.

FDP_AUT_EXT.2.4

The TSF shall concatenate the output of the keyed hash function, the
Message Authentication Code (MAC).

60

FDP_AUT_EXT.2.5 The TSF shall authenticate the encrypted file prior to decryption.

FDP_AUT_EXT.2.6 The TSF shall authenticate the data by comparing the keyed hash
output of the ciphertext against the stored MAC.

FDP_AUT_EXT.2.7 The TSF shall notify the user of an unsuccessful authentication and
prevent decryption of the ciphertext.

FDP_AUT_EXT.2.8

FDP_AUT_EXT.2.9

During verification, the TSF shall assume the MAC is at the end of the
ciphertext file.

The FAK will be generated using a RBG that meets FCS_RBG_EXT.1
(from the AS PP).

Application Note:

148 The intent of this requirement is to specify the correct way of using a keyed hash function to

authenticate the data, and enable authentication of data.

Assurance Activities:

Activity Assurance Activity

TSS 149 The evaluator shall check the TSS section to confirm that it describes how a
request for each type of supported resource (file (or set of files)) will result in
data authentication using a keyed hash function. The evaluator will confirm
that the TOE will respond appropriately to a failed authentication, to include
notifying the user of an invalid authentication and preventing decryption. The
evaluator will confirm that any file encryption utility will be able to identify
where the MAC is placed.

150 The evaluator will confirm that a FAK is used as part of the authentication
process and will identify the keyed hash function utilized.

Guidance 151 It is encouraged for every implementation to use a FAK that is wholly different
and independently generated from the FEK.

Tests
The evaluator shall perform the following test:

● Test 1: Create an encrypted file and confirm that authentication of this file
using the correct FAK will result in a success.

● Test 2: Modify an arbitrary number of bits of ciphertext and attempt to run the
authentication and decryption operations on the file. Assert that the TOE
successfully identified the forged ciphertext file and notified the user.

Extended: Authentication of Selected User Data (FDP_AUT_EXT)

61

FDP_AUT_EXT.1 Extended: Authentication of Selected User Data

FDP_AUT_EXT.1.1 The TSF shall perform authentication of the user-selected file (or set of
files) and provide notification to the user if modification had been
detected.

FDP_AUT_EXT.1.2 The TSF shall implement a data authentication method based on
[selection:

cryptographic, keyed hashing service and verification in accordance with
FDP_AUT_EXT.2;

asymmetric signing and verification in accordance with FDP_AUT_EXT.3
].

Application Note:

152 This is the primary requirement for authentication of the protected resources (files and sets of files).

It is highly encouraged for vendors to utilize a keyed hashing service or asymmetric signing
mechanism to ensure data authentication, as these are the only two implementations noted in this
EP that prevent decryption if authentication is unsuccessful. Using modes such as XTS or CBC will
require additional data authentication measures to be added, such as a keyed hash function or
asymmetric signing, because these modes do not come inherently packaged with data
authentication or a way to signal to the user that data has been modified.

153
Assurance Activities:

Activity Assurance Activity

TSS The evaluator shall examine the TSS to determine that it lists each type of
resource that can be authenticated (e.g., file, directory) and what
“authenticated” means in terms of the resource (e.g., “authenticating a
directory” means that all of the files contained in the directory are
authenticated, but the data in the directory itself (which are filenames and
pointers to the files) are not authenticated). The evaluator shall also confirm
that the TSS describes how each type of resource listed is authenticated by the
TOE and how authentication measures are added to each resource (e.g. taking
all the encrypted files through a MAC function and appending the MAC to the
set of files). The evaluator shall ensure that this description includes the case
where an existing file or set of files has authentication measures added for the
first time; a new file or set of files is created and adds authentication measure;
an existing file or set of files updates or replaces its existing authentication
measures (that is, it had a MAC appended to the data; it was authenticated
and decrypted (by the TOE) for use by the user, and is then subsequently re-
encrypted with an updated MAC); and corresponding decryption scenarios. If
other scenarios exist due to product implementation/features, the evaluator

62

shall ensure that those scenarios are covered in the TSS as well.

Guidance 154 If the TOE creates temporary objects and these objects can be protected
through administrative measures (e.g., the TOE creates temporary files in a
designated directory that can be protected through configuration of its access
control permissions), then the evaluator shall check the Operational Guidance
to ensure that these measures are described.

155 If there are special measures necessary to configure the method by which the
file or set of files are authenticated (e.g., choice of function used, additional
keys, etc.), then those instructions shall be included in the Operational
Guidance and verified by the evaluator. This includes, for instance, lists of
allowed platforms, libraries, and devices, and instructions for using them. In
these cases, the evaluator checks to ensure that all non-TOE products used to
satisfy the requirements of the ST that are described in the Operational
Guidance are consistent with those listed in the ST, and those tested by the
assurance activities of this EP.

Tests
The evaluator shall also perform the following tests. These tests may be
performed in conjunction with the tests listed for FCS_COP.1(2) (from the AS
PP), FCS_COP.1(3) (from the AS PP), and FCS_COP.1(4). These tests must be
performed for each data authentication feature and platform claimed in the
ST; all instructions for configuring the TOE and each of the environments must
be included in the Operational Guidance and used to establish the test
configuration.

For each resource and data authentication scenario listed in the TSS, the
evaluator shall ensure that the TSF is able to successfully add authentication
measures and authenticate the resource using the following methodology.

● Monitor the temporary resources being created (if any) and deleted by the
TSF—the tools used to perform the monitoring (e.g., procmon for a Windows
system) shall be identified in the test report. The evaluator shall ensure that
these resources are consistent with those identified in the TSS, and that they
are protected as specified in the Operational Guidance and are deleted when
the decryption/encryption and authentication operations are completed.

B.4 FAK Support

 FCS_COP.1(6) FAK encryption/decryption support

FCS_COP.1.1(6) The FAK shall be protected in the same manner as the FEK, in accordance
with FCS_COP.1(5).

Application Note:

156 The intent of this requirement is to clarify that, if a FAK is to be used, it should be treated as
sensitive as the FEK, and thus, follow the same encryption and decryption practices.

63

Assurance Activities:
The evaluator shall follow the assurance activities as laid out in FCS_COP.1(5) to assert proper FAK
protection.

FCS_CKM_EXT.5 File Authentication Key (FAK) Support

FCS_CKM_EXT.5.1 The TSF shall use a FAK to authenticate sensitive data when a
cryptographic, keyed hashing function is used for data authentication and
shall be supported in the following manner:

 [selection:

 A FAK conditioned from a password/passphrase shall never be stored in
non-volatile memory

 a FAK will be stored in non-volatile memory encrypted with a KEK as
specified in FCS_COP.1(5) using authorization factors as specified in
FCS_CKM_EXT.1

].

FCS_CKM_EXT.5.2 The TSF shall create a unique FAK for each file (or set of files) using the
mechanism on the client as specified in FCS_RBG_EXT.1.

FCS_CKM_EXT.5.3 The FAKs must be generated by the TOE.

FCS_CKM_EXT.5.4 The TSF will not write FAKs to non-volatile memory.

FCS_CKM_EXT.5.5 The FAK shall be protected in a manner conformant to FCS_COP.1(6).

Application Note:
157 The intent of this requirement is to describe the different methods that a FAK can be
created and formed.
FCS_CKM_EXT.5.1 details how a FAK may be directly conditioned from a password/passphrase or
may be a randomly generated from an approved randomizer.

FCS_CKM_EXT.5.2 requires that each resource to be encrypted has a unique FAK, and that this FAK
is generated by the TSF. If the encrypted resource is a set of files encrypted under one FAK,
additional requirements on the initialization vectors and cipher modes must be adhered to in
Section 4.2.

Assurance Activities:

Activity Assurance Activity

TSS FCS_CKM_EXT.5.1: The evaluator shall examine the TSS to determine how the
FEK will actually be formed and details how the FEK is stored (or not stored) in
memory.

FCS_CKM_EXT.5.2: The evaluator shall examine the TSS to determine that it

64

describes how a FAK is created for a protected resource and associated with
that resource; protection of the FAK itself is covered by FCS_COP.1(5). The
evaluator confirms that—per this description—the FAK is unique per resource
(file or set of files) and that the FAK is created using the mechanisms specified
in FCS_CKM_EXT.1.

FCS_CKM_EXT.5.3: The TSS must detail that the FAKs are generated on the
client machine and are not generated on an external server.

FCS_CKM_EXT.5.4: FCS_CKM_EXT.4 contains the requirements necessary to
ensure that plaintext keys and key material do not remain in plaintext form in
the TSF’s non-volatile memory space. In TOEs where the FAK is protected with
a KEK, the FAK will need to be encrypted and stored in non-volatile memory
when not being used to decrypt/encrypt a file. (Typically, the encrypted FAK is
stored in the meta-data of the encrypted file(s).) The evaluator shall examine
the TSS to ensure that it describes how the FAK is encrypted, both after its
initial creation and after it has been decrypted for use (note that in the entirely
likely possibility that the FAK is not re-encrypted, then this case must be
indicated in the TSS and the description for FCS_CKM_EXT.4 will cover disposal
of the plaintext FEK and FAK). The evaluator shall further check to ensure that
the TSS describes how the FAK and any other associated meta-data necessary
to decrypt the file or set of files are associated with the resource. This
description can be combined with the description required for FCS_COP.1(5).

Guidance None

Tests An example ciphertext file generated via the TOE shall be provided to the
evaluator with the accompanying FAK and prerequisite authorization
information used for encryption. The evaluator will use the TOE in conjunction
with a debugging or forensics utility to attempt an authentication of the
ciphertext file using the provided authorization information. The evaluator will
then terminate processing of the TOE and perform a search through non-
volatile memory using the provided FAK string. The evaluator must document
each command, program or action taken during this process, and must confirm
that the FAK was never written to non-volatile memory. This test must be
performed three times to ensure repeatability. If during the course of this
testing the evaluator finds that the FAK was written to non-volatile memory,
they should be able to identify the cause (i.e. the TOE wrote the FAK to disk, the
TOE platform dumped volatile memory as a page file, etc), and document the
reason for failure to comply with the requirement.

FCS_SMC_EXT.1 Submask Combining

FCS_SMC_EXT.1.1 The TSF shall combine submasks using the following method

[selection: exclusive OR (XOR), SHA-256, SHA-512] to generate an intermediary key or

BEV.

65

Application Note: This requirement specifies the way that a product may combine the various
submasks by using either an XOR or an approved SHA-hash.

Assurance Activities:

Activity Assurance Activity

TSS If keys are XORed together to form an intermediate key, the TSS section
shall identify how this is performed (e.g., if there are ordering
requirements, checks performed, etc.). The evaluator shall also
confirm that the TSS describes how the length of the output produced is
at least the same as that of the FEK.

Guidance None

Tests None

B.5 Data Authentication using asymmetric signing and verification
FDP_AUT_EXT.3 Extended: Data Authentication using asymmetric signing and

verification

FDP_AUT_EXT.3.1 The TSF shall use a secure hash function in accordance with
FCS_COP.1(3) (from the AS PP) with the entire ciphertext file as input
to create a hash.

FDP_AUT_EXT.3.2

The TSF shall use a cryptographic signing function in accordance with
FCS_COP.1(2) (from the AS PP) and must use the hash generated in
accordance with FDP_AUT_EXT.3.1 as input to the signing process.
Additionally, use of ephemeral key for signing purposes is prohibited.

FDP_AUT_EXT.3.3

The TSF shall use a public and private key pair generated in
accordance with FIA_CKM.1(1) and must use this key pair as part of
the cryptographic signing process in accordance with
FDP_AUT_EXT.3.2.

FDP_AUT_EXT.3.4

The TSF shall authenticate the ciphertext data prior to decryption.

FDP_AUT_EXT.3.5 The TSF shall notify the user of an unsuccessful authentication and
prevent decryption of the ciphertext if such an event were to occur.

FDP_AUT_EXT.3.6 The TSF shall append the signature to the end of the ciphertext file.

FDP_AUT_EXT.3.7 During verification, the TSF shall assume the signature is at the end

66

of the ciphertext file.

Application Note:
158 The intent of this requirement is to specify the secure way of using a cryptographic signing and

hashing function as part of the data authentication mechanism.

Assurance Activities:

Activity Assurance Activity

TSS 159 The evaluator shall check the TSS section to confirm that it describes how a
request for each type of supported resource (file (or set of files)) will result in
data authentication using a secure hash and cryptographic signing process.
The evaluator will confirm that the supplied public and private key pair were
generated in accordance with FCS_CKM.1(1). The evaluator will confirm that
the entire ciphertext file was used to create the hash and that the hash was
used as input to the cryptographic signing function. The evaluator will confirm
that the TSF notifies the user of an unsuccessful authentication and prevents
decryption.

Guidance 160 None.

Tests
The evaluator shall perform the following test:

● Test 1: Create an encrypted file and demonstrate that authentication of this file
using the correct keying material will be successful.

● Test 2: Modify an arbitrary number of bits of ciphertext and attempt to run the
authentication and decryption operations on the file. Assert that the TOE
successfully identified the forged ciphertext file and notified the user.

67

Appendix C: Selection-Based Requirements

As indicated in the introduction to this EP, the baseline requirements (those that must be
performed by the TOE) are contained in the body of this EP. There are additional requirements
based on selections in the body of the EP: if certain selections are made, then additional
requirements below will need to be included.

C.1 Authorization Factors

161 The TOE may support password/passphrase-based, ECC CDH, and RSA authorization factors. One or
more of these factors are used to derive the KEK. TOE-supported authorization factors are specified
in FCS_CKM_EXT.1. In order to be conformant with this EP for password-based and passphrase-
based authorization factors.

162 If password/passphrase-based authorization factors are supported, the ST author will include this
requirement and the associated application notes and assurance activities.

FCS_CKM.1(A) Cryptographic key generation (Password/Passphrase conditioning)

FCS_CKM.1.1(A)

FCS_CKM.1.2(A)

Refinement: A password/passphrase used to generate a password
authorization factor shall enable up to [assignment: positive integer of 64 or
more] characters in the set of {upper case characters, lower case characters,
numbers, and the following special characters: “!”, “@”, “#”, “$”, “%”, “^”, “&”,
“*”, “(“, and “)”, and [assignment: other supported special characters] and shall
perform [Password-based Key Derivation Functions] in accordance with a
specified cryptographic algorithm [HMAC-[selection: SHA-256, SHA-384, SHA-
512]], with [assignment: positive integer of 4096 or more] iterations, and
output cryptographic key sizes [selection: 128, 256] that meet the following:
[NIST SP 800-132].

The TSF shall generate all salts using a RBG that meets FCS_RBG_EXT.1 (from
the AS PP) and with entropy corresponding to the security strength selected for
PBKDF in FCS_CKM.1.1(A).

Application Note:

163 The password/passphrase is represented on the host machine as a sequence of characters whose

encoding depends on the TOE and the underlying OS. This sequence must be conditioned into a
string of bits that is to be used as a KEK that is the same size as the FEK.

164 The key cryptographic key sizes in the fourth selection should be made to correspond to the KEK key
sizes selected in FCS_CKM_EXT.1.

165 This password/passphrase must be conditioned into a string of bits that forms the submask to be
used as input into the KEK. Conditioning can be performed using one of the identified hash functions
or the process described in NIST SP 800-132; the method used is selected by the ST Author. SP 800-
132 requires the use of a pseudo-random function (PRF) consisting of HMAC with an approved hash
function. The ST author selects the hash function used, also includes the appropriate requirements

68

for HMAC and the hash function.

166 Appendix A of SP 800-132 recommends setting the iteration count in order to increase the
computation needed to derive a key from a password and, therefore, increase the workload of
performing a password recovery attack. However, for this EP, a minimum iteration count of 4096 is
required in order to ensure that twelve bits of security is added to the password/passphrase value.
A significantly higher value is recommended to ensure optimal security.

Assurance Activities:

Activity Assurance Activity

TSS 167 FCS_CKM_1.1(A): There are two aspects of this component that require
evaluation: passwords/passphrases of the length specified in the requirement
(at least 64 characters) are supported, and that the characters that are input
are subject to the selected conditioning function. These activities are
separately addressed in the text below.

168 Support for minimum length: The evaluators shall check the TSS section to
determine that it specifies that a capability exists to accept
passwords/passphrases with the minimum number of characters specified in
the ST in this assignment statement.
Support for PBKDF: The evaluator shall examine the password hierarchy TSS to
ensure that the formation of all KEKs or FEKs (as decided in the
FCS_CKM_EXT.1 selection) is described and that the key sizes match that
described by the ST author.
The evaluator shall check that the TSS describes the method by which the
password/passphrase is first encoded and then fed to the SHA algorithm. The
settings for the algorithm (padding, blocking, etc.) shall be described, and the
evaluator shall verify that these are supported by the selections in this
component as well as the selections concerning the hash function itself. The
evaluator shall verify that the TSS contains a description of how the output of
the hash function is used to form the submask that will be input into the
function and is the same length as the KEK as specified in FCS_CKM_EXT.4.
For the NIST SP 800-132-based conditioning of the password/passphrase, the
required assurance activities will be performed when doing the assurance
activities for the appropriate requirements (FCS_COP.1.1(4)). If any
manipulation of the key is performed in forming the submask that will be used
to form the FEK or KEK, that process shall be described in the TSS.
No explicit testing of the formation of the submask from the input password is
required.

FCS_CKM_1.2(A): The ST author shall provide a description in the TSS regarding
the salt generation. The evaluator shall confirm that the salt is generated using
an RBG described in FCS_RBG_EXT.1 (from the AS PP).

Guidance Support for minimum length: The evaluators shall also check the Operational
Guidance to determine that there are instructions for guidance on how to

69

generate large passwords/passphrases external to the TOE and instructions for
how to configure the password/passphrase length and optional complexity
settings (note to Management section). This is important because many
default settings for passwords/passphrases will not meet the necessary
entropy needed as specified in this EP.

Tests
Support for minimum length: In addition to the analysis above, the evaluator
shall also perform the following tests on a TOE configured according to the
AGD_PRE guidance:

● Test 1: Ensure that the TOE supports passwords/passphrases of 64 characters.
● Test 2: Try entering a password/passphrase less than 64 characters.
● Test 3: If the TOE supports a password/passphrase length up to a maximum

number of characters, n (which would be greater than 64), then ensure that
the TOE will not accept more than n characters.

Conditioning: No explicit testing of the formation of the authorization factor
from the input password/passphrase is required.

Iteration count: The evaluator shall verify that the iteration count for PBKDFs
performed by the TOE comply with NIST SP 800-132 by ensuring that the TSS
contains a description of the estimated time required to derive key material
from passwords and how the TOE increases the computation time for
password-based key derivation (including but not limited to increasing the
iteration count).

C.2 Cryptographic Key Generation

FCS_CKM.1(1) Cryptographic Key Generation (for asymmetric keys)

169 If ECC CDH is one of the methods used to protect the FEK as specified in FCS_COP.1(5) by the ST
author, ephemeral keys are required to be generated and used to generate the shared secret used
to protect the FEK. The following component will be included by the ST author when this selection
is made.

FCS_CKM.1.1(1) Refinement: The application shall [selection: invoke platform-provided
functionality, implement functionality] shall generate asymmetric
cryptographic keys used for key establishment in accordance with NIST Special
Publication 800-56A, “Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography” for elliptic curve-based key
establishment schemes and implementing “NIST curves” [selection: P-256, P-
384] (as defined in FIPS PUB 186-4, “Digital Signature Standard”) and specified
cryptographic key sizes equivalent to, or greater than, a symmetric key strength
of 112 bits.

70

Application Note:

170 This component requires that the TOE/TOE platform be able to generate the public/private key

pairs that are used for key establishment purposes when ECC CDH is used to protect the FEK; the ST
author selects the entity that is performing the key generation activity in the first selection.
The ST author also chooses the curves that are supported for the key pair generation activity; either
or both can be selected.

Assurance Activity:

Activity Assurance Activity

TSS Requirement met by the TOE
The evaluator shall examine the TSS to ensure that it specifies which key size is
used.

Requirement met by the Platform

The evaluator shall examine the TSS to verify that it describes how the key
establishment algorithm is invoked.

Guidance 1

Tests Requirement met by the TOE

ECC Key Generation Test

171 For each supported NIST curve selected by the ST author, the evaluator shall
require the implementation under test (IUT) to generate 10 private/public key
pairs. The private key shall be generated using an approved random bit
generator (RBG). To determine correctness, the evaluator shall submit the
generated key pairs to the public key verification (PKV) function of a known
good implementation.

ECC Public Key Verification (PKV) Test

172 For each supported NIST curve selected by the ST author, the evaluator shall
generate 10 private/public key pairs using the key generation function of a
known good implementation and modify five of the public key values so that
they are incorrect, leaving five values unchanged (i.e., correct). The evaluator
shall obtain in response a set of 10 PASS/FAIL values.

FCS_COP.1(4) Cryptographic Operation (Keyed-Hash Message Authentication)

71

173 Some schemes that may be implemented in the TOE may contain Key Derivation Functions (or
other functions) that require a Keyed-Hash Message Authentication function. If such a capability is
required, the ST will include this requirement in the body of the ST.

FCS_COP.1.1(4) Refinement: The application shall [selection invoke platform-provided
functionality, implement functionality] to perform keyed-hash message authentication in
accordance with a specified cryptographic algorithm HMAC- [selection: SHA-256, SHA-384, SHA-
512], key size [assignment: key size (in bits) used in HMAC], and message digest size of [selection:
256, 384, 512] bits that meet the following: FIPS PUB 198-1, “The Keyed-Hash Message
Authentication Code”, and FIPS PUB 180-4, “Secure Hash Standard”.

Application Note:

2 The selection of the hashing algorithm must correspond to the selection of the message digest size;
for example, if HMAC-SHA-256 is chosen, then the only valid message digest size selection would be
256 bits.

3 The message digest size above corresponds to the underlying hash algorithm used. Note that
truncating the output of the HMAC following the hash calculation is an appropriate step in a variety
of applications. This does not invalidate compliance with this requirement, however, the ST should
state that truncation is performed, the size of the final output, and the standard to which this
truncation complies.

4 The evaluator shall check that the association of the keyed-hash function with other cryptographic
functions specified in the file encryption product ST (whether these are performed by the platform
or by the TOE) that either use or are used by the keyed-hash function is documented in the TSS.

Assurance Activity:

Activity Assurance Activity

TSS Requirement met by the TOE

5 For all cases where the output of the HMAC following the hash calculation is
truncated, the evaluator shall ensure that the TSS states for what operation
this truncation takes place; the size of the final output; and the standard to
which this truncation complies.

The evaluator shall examine the TSS to ensure that it specifies the following
values used by the HMAC function: key­length, hash function used, block size,
and output MAC length used.

Requirement met by the Platform

The evaluator shall examine the TSS to verify that it describes how the keyed
hash function algorithm is invoked.

Guidance 6

72

Tests Requirement met by the TOE

For each of the supported parameter sets, the evaluator shall compose 15 sets
of test data. Each set shall consist of a key and message data. The evaluator
shall have the TSF generate HMAC tags for these sets of test data. The
resulting MAC tags shall be compared to the result of generating HMAC tags
with the same key and IV using a known good implementation.

C.3 User Authorization

7 Because the actions of the TSF are fairly different depending on whether password/passphrase or
external entity authorization factors are used (see Section 1.1.2, Authorization), different user
authorization components are needed for each type of authorization factor supported by the TOE.
The ST author will include FIA_AUT_EXT.1 in the ST if the TOE supports external entity authorization
factors and will include FIA_FCT_EXT.2 in the ST if the TOE supports password/passphrase
authorization factors.

C.3.1 Extended: External Entity Authorization Factors

FIA_FCT_EXT.1(1) Extended: User Authorization with External Entity Authorization Factors

FIA_FCT_EXT.1.1(1) The TSF shall support an external entity authorization factor mechanism
as defined in FCS_CKM_EXT.1 and FCS_COP.1(5) to perform user
authorization.

FIA_FCT_EXT.1.2(1)

The TSF shall confirm that the user is authorized via the mechanism
provided in FIA_FCT_EXT.1.1(1) before allowing decryption of user data.

FIA_FCT_EXT.1.3(1)

The TSF shall support the use of multiple instances of authorization
factors that result in unique KEKs.

FIA_FCT_EXT.1.4(1)

The TSF shall receive an indication that the authorization factor is valid
before decrypting the user’s encrypted files.

Application Note:
8 This requirement is used when an external entity (e.g., smartcard) contains a public/private key pair

that is used to protect a FEK used to decrypt the encrypted file (or set of files) owned by the user
and thus gain access to the data. It is fairly important to note that this is not considered
authentication of an individual user. While FIA_FCT_EXT.1.3(1) requires the TSF to support multiple
authorization factors to produce multiple KEKs, the intent is that the TSF supports a system where
multiple users have access to files on the underlying platform, and that each user has an
authorization factor so that they can protect their own files from other users (this is in contrast to a
full disk encryption product where a single authorization factor allows access to all of the files on
that disk). In this case it would mean that the TOE is able to support multiple users each with their

73

own smartcard.
9 User authorization only needs to be performed when a request to the TOE for decrypt/encrypt

services is made, not on each individual read and write for that file. In the context of
FIA_FCT_EXT.1.4(1), the notion is that the user will enter (either facilitated by the TOE or directly
into the external entity through a facility outside of the TOE) the credentials needed to unlock the
private key on the external entity; if these credentials are not correct for the private key on the
external entity, then the TOE receives an indication from the external entity that the authorization
has failed and no decryption is performed.

10
Assurance Activities:

Activity Assurance Activity

TSS 11 The evaluator shall check the TSS section to confirm that it describes, for each
type of external entity authorization factor supported by the TOE, how a
request for each type of supported resource (file or set of files, etc.) to be
encrypted/decrypted is captured by the TOE; and how the TSF interacts with
the external entity to obtain a FEK with which to perform the desired
operation. Scenarios to be covered should include initial creation of the FEK,
and using a FEK to decrypt/encrypt an existing resource as well as to encrypt a
resource for the first time. If different resource types require different behavior
by the TSF in terms its interactions with external entities in unwrapping the
FEK, then the evaluator shall check to ensure that these cases are described as
well.

12 Since cryptographic functions may be implemented in the Operational
Environment to perform the wrapping and unwrapping of the FEK, the
evaluator shall check the TSS to ensure it describes--for each platform and
external entity identified in the ST--the interface(s) used by the TOE to invoke
this functionality. This must include the interfaces used (if supported by the
TOE) for entry of credentials used to decrypt the private key, as well as the
interfaces for passing the (encrypted or unencrypted, as dictated by the
implementation) FEK to the external entity and status from external entity in
terms of the validity of the authorization factors/FEKs. If the interface
conforms to a standard (e.g., PKCS #11), then it is sufficient for the evaluator to
ensure that the TSS describes how the TOE uses the standard interfaces, and
that each external entity claims to support that standard. Other interfaces
must be described at the level of an API call (for instance, a “man page” entry
for *IX systems). For each mode of FEK encryption used by the external entity,
the evaluator shall check that the TSS identifies (using the information
contained in FCS_COP.1(4)) the algorithms supported by each external entity,
and any functionality implemented by the TSS to ensure that that functionality
is invoked.
The evaluator shall check to ensure that the TSS states that multiple users are
able to invoke the TOE, each with their own authorization factor.

The evaluator shall check to ensure that the TSS describes the method by which
a user attempting to decrypt a file for which they do not have the correct FEK is

74

detected and dis-allowed. If this operation is performed by the TSF, then the
method by which an incorrect FEK is detected shall be described in detail,
including the information used in detected incorrect FEKs. If this operation is
performed by the external entity, then the evaluator checks to ensure that the
TSS describes the information that the TSF must present to the external entity
in order for this determination to be made, and how the response from the
external entity is indicated to the TSF.

Guidance 13 The evaluator shall ensure that any configuration needed to be performed on
the TSF to support the external entities listed in the ST (e.g., entry of private-
key-credentials, algorithms to use to encrypt FEK) shall be contained in the
Operational Guidance. The evaluator shall also verify that the Operational
Guidance contains instructions on using each external entity authorization
factor claimed in the ST for each platform, and describes any error indicators
that may be returned in response to elements FIA_FCT_EXT.1.2(1) and
FIA_FCT_EXT.1.4(1).

Tests
The evaluator shall perform the following tests (these tests may be conducted
in concert with those specified for FDP_PRT_EXT.1):

● Test 1: For each external entity listed in the ST and resource type supported by

the TOE (file (or set of files)), ensure that correctly using the external entity
results in access to the protected resource. This activity must be performed
using all cryptographic FEK protection algorithms and private-key-entry
options identified in the TSS for each external entity. This activity must also be
performed for first-time encryption of a resource, as well as encryption and
decryption of an existing resource.

● Test 2: Choose (and describe the rationale in the test report) a representative

sample of different authorization factors (either instantiation of a single
authorization factor, or multiple different authorization factors), and
demonstrate that they can be used to protect different resource types on the
same platform using the TOE.

● Test 3: For each external entity listed in the ST and resource type supported by

the TOE (file (or set of files)), ensure that incorrect entry of the credential
protecting the private key results in a notification from the TOE that an
incorrect authorization has been provided.

● Test 4: For each external entity and platform combination that is valid as listed

in the ST, and resource type supported by the TOE (file (or set of files)), ensure
that an attempt to decrypt a protected resource is not associated with the user
requesting access results in a notification from the TOE that an incorrect
authorization has been provided.

75

C.3.2 Extended: Password/Passphrase Authorization Factors

FIA_FCT_EXT.1(2) Extended: User Authorization with Password/Passphrase Authorization

Factors

FIA_FCT_EXT.1.1(2) The TSF shall provide a mechanism as defined in FCS_CKM_EXT.1 and
FCS_COP.1(4) to perform user authorization.

FIA_FCT_EXT.1.2(2)

The TSF shall perform user authorization using the mechanism provided
in FIA_FCT_EXT.1.1(2) before allowing decryption of user data.

FIA_FCT_EXT.1.3(2)

The TSF shall support the use of multiple instances of authorization
factors that result in unique encryption keys.

FIA_FCT_EXT.1.4(2)

The TSF shall verify that the user-entered authorization factors are valid
before decrypting the user’s encrypted files.

FIA_FCT_EXT.1.5(2)

The TSF shall ensure that the method of validation for each authorization
factor does not expose or reduce the effective strength of the KEK, FEK,
or CSPs used to derive the KEK or FEK.

FIA_FCT_EXT.1.6(2) The TSF shall perform user authorization using the mechanism provided
in FIA_FCT_EXT.1.1(2) before allowing the user to change the passphrase-
based authorization factor as specified in FMT_SMF.1(c).

Application Note:

14 The intent of this requirement is to specify the password and/or passphrase mechanisms by which

users are authorized to decrypt the encrypted file (or set of files) and thus gain access to their data.
It is fairly important to note that this is not considered authentication of an individual user. While
FIA_FCT_EXT.1.3(2) requires the TSF to support multiple authorization factors to produce multiple
KEKs, the intent is that the TSF supports a system where multiple users have access to files on the
underlying platform, and that each user has an authorization factor so that they can protect their
own files from other users (this is in contrast to a full disk encryption product where a single
authorization factor allows access to all of the files on that disk). There is no requirement that the
TSF even understand the concept of a “user” in the context of a file owner; it should merely be able
to tell (FIA_FCT_EXT.1.4(2)) if the authorization factor presented is valid for the file being requested,
and if so, perform the appropriate cryptographic operations on that file. User authorization only
needs to be performed when a request to the TOE for decrypt/encrypt services is made, not on each
individual read and write for that file.

15 Since the TSF is responsible for manipulating the password/passphrase authorization factor itself, in
this case FIA_FCT_EXT.1.1(2) and FIA_FCT_EXT.1.2(2) mean that the TSF itself provides the
mechanism to prompt the user for the authorization factors, verify that the authorization factors
are valid, transform the authorization factor into a KEK, and then use the KEK to decrypt the FEK so
that the data can be accessed.

76

16 Elements 1.4(2) and 1.5(2) deal with the validation of the authorization factors provided by the user
prior to a user being able to access the information in the file (or set of files). If a
password/passphrase authorization factor is not valid, it is undesirable to unmask the FEK and use
it to decrypt the file (or set of files) and present gibberish to the user. However, checking that the
authorization factor is valid should not be done in a way that allows an attacker to circumvent the
other requirements; since this operation may be done on the host, it may be
monitored/disassembled by an attacker and so must be designed with this threat in mind. In the
case that the TOE supports external authorization factors, this provision means that the external
entity must have a way of signaling to the TSF that the authorization factor was not valid (which
means that the information provided to decrypt the secret key was invalid), rather than just pass
back an incorrectly-derived KEK (as ECC CDH does) or decrypted FEK (as RSA decryption does) for
the TSF to use.

17 FIA_FCT_EXT.1.6(2) covers the case that the user wishes to change their password- or passphrase-
based authorization factor such that the user authorization functionality will have to be invoked
prior to the change being completed.

Assurance Activities:

Activity Assurance Activity

TSS 18 The evaluator shall check the TSS section to confirm that it describes how a
request for each type of supported resource (file (or set of files)) to be
encrypted/decrypted is captured by the TOE; how the user is prompted for an
authorization factor, and how the KEK is formed.

19
20 The evaluator shall check that the TSS describes how the authorization factors

are validated prior to allowing the user to access the data on a drive or change
their passphrase. This description shall be in enough detail so that the
evaluator can determine that the method or methods used do not expose the
FEK, KEK, or other key material. "Expose" also includes the notion of
weakening the FEK or KEK. It is not required to have a separate method for
checking each authorization factor if separate authorization factors are used to
provide submasks to create the KEK. The evaluator shall document their
analysis of the mechanism(s) used to authenticate the authorization factors in
the test report (ATE_IND).

21
22 The evaluator shall ensure the TSS describes how updates to the current

authorization factor are handled, to include verifying that a change to the
authorization factor cannot occur prior to providing the original authorization
factor and that once the update has transpired the original authorization
factor would no longer be effective.

23 For the cryptographic functions implemented in the Operational Environment
that are used by the TOE in implementing this component, the evaluator shall
check the TSS to ensure it describes--for each platform identified in the ST--the

77

interface(s) used by the TOE to invoke this functionality.

Guidance 24 The evaluator shall check that the Operational Guidance contains information
so that users understand how authorization factors are entered, and the
resources that are protectable by the TOE in each platform listed in the ST.
They shall also check to ensure it describes the method by which a user
changes their password/passphrase authorization factor.

Tests
The evaluator shall perform the following tests (these tests may be conducted
in concert with those specified for FDP_PRT_EXT.1 above):

● Test 1: For each authorization factor and resource type supported by the TOE
(file (or set of files)), ensure that the authorization factors are prompted for
prior to allowing any access to the protected resource. This activity must be
performed using all cryptographic FEK protection algorithms identified in the
TSS for each external entity. This activity must also be performed for first-time
encryption of a resource, as well as encryption and decryption of an existing
resource.

● Test 2: Choose (and describe the rationale in the test report) a representative

sample of different authorization factors (either instantiation of a single
authorization factor, or multiple different authorization factors), and
demonstrate that they can be used to protect different resource types on the
same platform using the TOE.

● Test 3: For each authorization factor and resource type supported by the TOE

(file (or set of files)), ensure that incorrect entry of an authorization factor
results in a notification from the TOE that an incorrect authorization has been
provided.

● Test 4: For each external entity and platform combination that is valid as listed

in the ST, and resource type supported by the TOE (file or set of files), ensure
that an attempt to decrypt a protected resource is not associated with the user
requesting access results in a notification from the TOE that an incorrect
authorization has been provided.

C.4 KEK Generation

FCS_CKM_EXT.1 Key Encrypting Key (KEK) Support

FCS_CKM_EXT.1.1

The TSF shall support KEK in the following manner based on the selection
chosen in FPT_FEK_EXT.1:

[selection:

78

FCS_CKM_EXT.1.2

derive a KEK using a password-based authorization factor conditioned as
defined in FCS_CKM.1(A) and in accordance with FIA_FCT_EXT.1(2);

support external authorization factors on an external entity using RSA key
pairs protected by the external entity and in accordance with
FIA_FCT_EXT.1(1);

support external authorization factors on an external entity using ECC key
pairs protected by the external entity and in accordance with
FIA_FCT_EXT.1(1);

using a Random Bit Generator as specified in FCS_RBG_EXT.1 (from the AS PP)
and with entropy corresponding to the security strength of AES key sizes of
[selection: 128 bit, 256 bit]
]

All KEKs shall be [selection: 128-bit, 256-bit] keys corresponding to at least the
security strength of the keys encrypted by the KEK.

Application Note:

25 The ST author must include in the ST the appropriate component from Appendix C concerning the

generation/support of the selected authorization factor. As previously indicated, the authorization
factor can either be derived by the TSF in the case of passwords/passphrases or using an RBG, or
the TOE can use an external entity that contains a key pair associated with that user that is used to
protect the FEK (the TSF in this case will have a reduced role in the cryptographic operations
involving the KEK and FEK depending on the specific scheme and implementation used; some
cryptographic functions will be provided by the external entity (such as those used to decrypt the
FEK)).

26 A password is a protected/private string of letters, numbers, and/or special characters used to
authenticate an identity or to authorize access to data. One concern is that a secure password may
be hard to remember and the user may write it down. A passphrase is a sequence of words,
preferably unrelated. Because words are easier for a user to remember, it is possible to create a
long passphrase meeting the requirements laid out in Appendix C that will be as secure as a shorter,
more complicated to remember password.

27 For this selection, the ST author selects one (or more, if the TOE supports multiple authorization
factors) of the listed authorization factors. The TSF will be responsible for conditioning the key when
selecting the password/passphrase. If an external entity contains at least some portion of the
authorization factor, regardless of the implementation (smartcard, library on the OS hosting the
TOE), the second or third item will be selected, depending on how the FEK is protected. If a KEK is
randomly generated, the fourth item is selected. In all cases, the appropriate requirements from
Appendix C should be included to reflect the authorization factor(s) used.

79

Activity Assurance Activity

TSS The assurance activity for this component entails examination of the ST’s TSS
to determine that the TOE’s implementation of the requirements is
documented. The evaluators shall first examine the TSS section to ensure that
the authorization factors specified in the ST are described. For
password/passphrase-based factors, the examination of the TSS section is
performed as part of FCS_CKM.1(A) assurance activities.

If external authorization factors are supported, then the evaluator will perform
the following activities (these may be performed in conjunction with those
performed for FCS_COP.1(5) and FIA_FCT_EXT.1(1)). The evaluator checks to
ensure that the TSS describes the method used by the TSF to invoke the
function used to protect the private key of the user on the external entity. If
this function is provided by the external entity itself and not by the TSF, then
the evaluator shall ensure the TSS describes the method by which the TSS can
detect that the private key was successfully accessed by the external entity.

The evaluator shall also check that the TSS describes how the TSF invokes
either the RSA or ECC functionality in the external entity; this must include a
description of both an encryption and decryption scenario for the FEK. This
description shall include the manner in which the external entity is invoked to
ensure that the requirements for the FEK protection listed in FCS_COP.1(5) are
met.

Guidance The evaluator shall check the Operational Guidance to ensure that any
configuration of the TSF to support the authorization factors selected is
present. For instance, if external entities are to be used to decrypt/encrypt the
FEK, instructions for setting up the TOE to recognize the external entities (if
needed) must be present. The evaluator shall also check the Operational
Guidance to ensure that adequate warning is given to users regarding the
importance of having passwords/passphrases with strong entropy.

Tests
The evaluators also perform the following assurance activities:

● Test 1 [conditional]: If the TOE performs input validation on
password/passphrase authorization factors (e.g., correct length of factor),
perform tests to ensure the input validation routines identify malformed
authorization factors.

● Test 2: An example ciphertext file generated via the TOE shall be provided to
the evaluator with the accompanying KEK and prerequisite authorization
information used for encryption. The evaluator will use the TOE in conjunction
with a debugging or forensics utility to attempt a decrypt of the ciphertext file
using the provided authorization information. The evaluator will then
terminate processing of the TOE and perform a search through non-volatile

80

memory using the provided KEK string. The evaluator must document each
command, program or action taken during this process, and must confirm that
the KEK was never written to non-volatile memory. This test must be
performed three times to ensure repeatability. If during the course of this
testing the evaluator finds that the KEK was written to non-volatile memory,
they should be able to identify the cause (i.e. the TOE wrote the KEK to disk, the
TOE platform dumped volatile memory as a page file, etc.), and document the
reason for failure to comply with the requirement.

Other testing is performed with the FIA_FCT_EXT.1, FCS_COP.1(5), and
FDP_PRT_EXT.1 assurance activities.

Appendix D: Objective Requirements

28 As indicated in the introduction to this EP, the baseline requirements (those that must be

performed by the TOE) are contained in the body of this EP. There are additional requirements
that specify security functionality that is desirable and these requirements are contained in this
Appendix. It is expected that these requirements will transition from objective requirements to
baseline requirements in future versions of this EP.

These requirements may be included in the ST and the TOE will still be able to claim conformance
to this EP.

There are no objective requirements at this time.

81

Appendix E: Glossary, Acronyms, and References

E.1 Glossary of Terms
Administrator – are Authorized Users with higher privileges and typically handle configuration and
management functions, such as configuring and updating the TOE.

Authorization factor (AF) – a value submitted by the user, present on the host, or present on a
separate protected hardware physical device used to establish that the user (and potentially the
host) is in the community authorized to use the TOE. The authorization factors are used to
generate the KEK. Note that these AFs are not used to establish the particular identity of the user.

Authorized User – a user who has been provided Authorization factors by the administrator to use
the TOE.

Data Encryption – the process of encrypting all user data written to volatile memory.

Deterministic Random Bit Generator (DRBG) – a cryptographic algorithm that produces a
sequence of bits from a secret initial seed value. Without knowledge of the seed value, the output
sequence should be unpredictable up to the security level of the DRBG.

Entropy Source – this cryptographic function provides a seed for a random bit generator by
accumulating the outputs from one or more noise sources. The functionality includes a measure of
the minimum work required to guess a given output and tests to ensure that the noise sources are
operating properly.

File/Set of files - the user data that is selected to be encrypted, which can include individual file
encryption (with a FEK per file) or a set of files encrypted with a single FEK.

File Authentication Key (FAK) - the secret value used as input when a keyed hash function is used
to perform data authentication.

File Encryption Key (FEK) – the key that is used by the encryption algorithm to encrypt the selected
user data on the host machine.

Key Encryption Key (KEK) – the key that is used to encrypt the FEK.

Keying material – the KEK, FEK, authorization factors and random numbers or any other values
from which keys are derived.

Noise Source – the component of an RBG that contains the non-deterministic, entropy-producing
activity.

Operational Environment – hardware and software that are outside the TOE boundary that
support the TOE functionality and security policy, including the host platform, its firmware, and the
operating system.

Password – A short string of characters used for authorization to the data on the device.

Passphrase – A long string of characters that may be used for authorization to the data on the

82

device.

Random Bit Generator (RBG) – a cryptographic function composed of an entropy source and DRBG
that is invoked for random bits needed to produce keying material

SAR (Security Assurance Requirements) – describes the development and evaluation
methodologies for the developer and the lab to demonstrate compliance with the Security
Functional Requirements.

Sensitive Data - Any data of which the compromise with respect to loss, misuse, or unauthorized
access to or modification of could adversely affect the interest of the TOE user.

SFR (Security Functional Requirement) – describes security functions that must be met by the TOE.

ST (Security Target) – describes and identifies the security properties of the TOE.

Shutdown – power down or unintentional loss of power of the TOE or host platform.

System files – Files that reside on the host machine that are used in the operation of the file
encryption software.

Target of Evaluation (TOE) – refers to a product or set of products that fulfill the requirements to
decrypt/encrypt user data on a host machine. This includes all hardware, firmware and software
used to satisfy the requirements of this EP.

Temporary File - a file created by an application for short term storage of sensitive data.

TOE Security Functionality (TSF) – a set consisting of all hardware, software, and firmware of the
TOE that must be relied upon for the correct enforcement of the TSP.

TOE Security Policy (TSP) – a set of rules that regulate how assets are managed, protected and
distributed within a TOE.

TOE Summary Specification (TSS) – a narrative describing how the TOE meets the SFRs in enough
detail so that one can understand the operation of the TOE and the implementation of the security
functional requirements.

Trusted Host – Source/destination host configured and maintained to provide the TOE with
appropriate IT security commensurate with the value of the user data protected by the TOE.

Unauthorized User – a user who has not been authorized to use the TOE and decrypt encrypted
user data.

User Data – All data that originate on the host, or is derived from data that originate on the host,
excluding system files and signed firmware updates from the TOE manufacturer.

Volatile memory – memory that loses its content when power is turned off.

Zeroize – this term is used to make a distinction between dereferencing a memory location and
actively overwriting it with a constant. Keying material needs to be overwritten when it is no longer

83

needed.

E.2 Acronyms

AES Advanced Encryption Standard

CC Common Criteria

CM Configuration management

FAK File Authentication Key

FEK File Encryption Key

DRBG Deterministic Random Bit Generator

EAL Evaluation Assurance Level
ECC Elliptic Curve Cryptography
ECC CDH Elliptic Curve Cryptography Cofactor Diffie-Hellman (see NIST SP 800-

56A rev 2, section 6.2.2.2)
EP Extended Package

FIPS Federal Information Processing Standards
ISSE Information System Security Engineers
IT Information Technology
KDF Key Derivation Function
KEK Key Encryption Key
PBKDF Password-Based Key Derivation Function
PIN Personnel Identification Number
PKI Public Key Infrastructure

PP Protection Profile

PUB Publication

RBG Random Bit Generator

SAR Security Assurance Requirement

SF Security Function
SFR Security Functional Requirement
ST Security Target
TOE Target of Evaluation
TSF TOE Security Functionality
TSFI TSF Interface
TSS TOE Summary Specification

84

E.3 References

[1] Federal Information Processing Standard Publication (FIPS-PUB) 140-2, Security
Requirements for Cryptographic Modules, National Institute of Standards and Technology,
March 19, 2007

[2] Federal Information Processing Standards Publication (FIPS-PUB) 180-4, Secure Hash
Standard, March, 2012

[3] Federal Information Processing Standard Publication (FIPS-PUB) 186-4, Digital Signature
Standard (DSS), National Institute of Standards and Technology, July 2013

[4] Federal Information Processing Standards Publication (FIPS-PUB) 197, Specification for the
Advanced Encryption Standard (AES), November 26, 2001

[5] Federal Information Processing Standards Publication (FIPS-PUB) 198-1, The Keyed-Hash
Message Authentication Code (HMAC), July 2008

[6] NIST Special Publication 800-38A, Recommendation for Block Cipher Modes of Operation:
Methods and Techniques, 2001 Edition

[7] NIST Special Publication 800-56A, Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography (Revised), March 2007

[8] NIST Special Publication 800-56B, Recommendation for Pair-Wise Key Establishment
Schemes Using Integer Factorization Cryptography, August 2009

[9] NIST Special Publication 800-90, Recommendation for Random Number Generation Using
Deterministic Random Bit Generators (Revised), March 2007

[10] NIST Special Publication 800-132, Recommendation for Password-Based Key Derivation,
December 2010

[11] NIST Special Publication 800-38F,Recommendation for Block Cipher Modes of Operation:
Methods for Key Wrapping, December 2012

85

Appendix F: Extended Package Identification

Tile: Protection Profile for Application Software Extended Package: File

Encryption
Version: 1.0
Sponsor: National Security Agency (NSA)
CC Version: Common Criteria for Information Technology Security Evaluation (CC) Version

3.1 Revision 3, July 2009
Evaluation Level: Evaluation Assurance Level (EAL) 1
Keywords: authorization factor, FEK, KEK, entropy, noise source, file encryption

86

Appendix G: Initialization Vector Requirements for NIST-Approved
Cipher Modes

Cipher Mode Reference IV Requirements

Cipher Block Chaining (CBC) SP 800-38A IVs shall be unpredictable. Repeating IVs leak
information about whether the first one or
more blocks are shared between two
messages, so IVs should be non-repeating in
such situations.

XEX (XOR Encrypt XOR)
Tweakable Block Cipher with
Ciphertext Stealing (XTS)

SP 800-38E No IV. Tweak values shall be non-negative
integers, assigned consecutively, and starting
at an arbitrary non-negative integer.

